
SocialCache: A Pervasive Social-Aware Caching Strategy for Self-Operated
Content Delivery Networks of Online Social Networks

Tiancheng Guo, Yuke Ma, Mengying Zhou, Xin Wang, Jun Wu, Yang Chen
Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China

{tcguo20,myzhou19,xinw,wujun,chenyang}@fudan.edu.cn, ykma22@m.fudan.edu.cn

Abstract—Online Social Networks (OSNs) play a significant
role in people’s daily life. Increasing OSN traffic promotes
the requirement for building self-operated Content Delivery
Networks (CDNs) to deliver OSN media data efficiently and
reduce traffic costs. OSN data in CDNs is heavily influenced
by social connectivity, such as friendships. To reduce CDN
network traffic by better using social connectivity information,
we propose SocialCache, a pervasive social-aware caching
strategy in self-operated CDNs. SocialCache supports several
social connectivity metric options that reflect the importance of
the OSN users and the popularity of the media files. Through
the improvement of the cache replacement algorithm in the
CDN node and the communication design between nodes,
SocialCache realizes the optimization of network traffic. Worth
mentioning, SocialCache can easily integrate into mainstream
CDN architectures while protecting user privacy. We imple-
ment SocialCache on Mininet, using real-world network mea-
surements for CDN hierarchy and a hill-climbing algorithm
for parameter selection. SocialCache outperforms a range of
state-of-the-art baselines on three real-world OSN datasets. On
the Twitter dataset, SocialCache reduces the network traffic
volume by 6.40% and improves the cache hit ratio by 14.22%.

Index Terms—Online Social Networks, Self-Operated Content
Delivery Networks, Social-Aware, Caching Strategy

1. Introduction

Online Social Networks (OSNs) [1] are developing
rapidly, attracting billions of users worldwide. Given the
high popularity of OSN services, pictures and videos trans-
ferred on OSNs generate enormous network traffic [2].
To cope with the massive network traffic and worldwide
requests, many OSNs choose CDN services to assist the
data delivery [3]. Although many existing commercial CDN
service providers like Akamai [4] and Amazon Cloud-
Front [5] offer high-quality and convenient CDN services,
OSN providers increasingly prefer to use self-operated
CDNs [6]. Compared with commercial CDNs, self-operated

This work is supported by the National Natural Science Foundation of
China (No. 62072115, No. 61971145, No. 61831018, No. U21A20452).
Yang Chen is the Corresponding Author.

CDNs provide OSN providers with better cost reduction [6],
privacy protection [7], and network controllability [8].

Numerous caching strategies benefit from the informa-
tion available to CDNs, such as network conditions [6] and
geographic locations [9]. The trend of OSNs using self-
operated CDNs brings several research opportunities. For
instance, the optimization of CDN caching strategies with
finer-grained user-activity information [10]. Many studies
considered content prefetching based on OSN informa-
tion [11] [12] [13] to improve user experience. However,
existing studies did not explore social connectivity informa-
tion deeply.

We propose our solution, SocialCache, to fill the gap
above. SocialCache is a pervasive caching strategy that uses
different types of social connectivity information for CDN
optimization, especially in the emerging situation of self-
operated CDNs of OSNs. The core idea of SocialCache is
to reduce network traffic between different CDN nodes, thus
primarily saving the service cost of self-operated CDNs [14]
and secondarily enhancing user experience [15]. Contents
recently created by high-impact OSN users are accessed
more frequently by geographically neighboring users [16],
and contents with large files have a greater impact on CDN’s
network traffic [5]. Therefore, giving higher priority and
longer retention times to such content can reduce traffic
costs and maintain cache hit ratios. In addition, SocialCache
is readily deployable in increments, requiring only minor
adjustments to the caching strategy of existing self-operated
or commercial CDNs.

We implement SocialCache using a well-known network
simulator called Mininet. Real-world network measurements
are carried out to deploy a mainstreaming three-layer CDN
hierarchy. A heuristic algorithm named hill-climbing is
adopted for parameter selection. We use three real-world
OSN datasets to validate SocialCache. The performance
of the SocialCache is evaluated from different aspects and
compared with several representative baselines. Experiment
results show that SocialCache vastly reduces the network
traffic volume and maintains high cache hit ratios. Mean-
while, SocialCache is a pervasive caching strategy that
performs well on different datasets while maintaining high
computational efficiency.

We summarize our key contributions as follows:

2023 IEEE International Conference on Communications (ICC): SAC Social Networking Track

978-1-5386-7462-8/23/$31.00 ©2023 IEEE 4931

IC
C

20
23

 -
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

m
un

ic
at

io
ns

 |
 9

78
-1

-5
38

6-
74

62
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
C4

50
41

.2
02

3.
10

27
95

88

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 20,2024 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

• We propose a caching strategy called SocialCache,
which is pervasive, easy to use, and privacy-
preserved, considering social connectivity informa-
tion for optimization in self-operated CDNs.

• We implement SocialCache using a popular network
simulator named Mininet. The implementation of
SocialCache includes a three-layer CDN hierarchy
based on real-world network measurements and pa-
rameter selection using hill-climbing.

• We compare SocialCache with four representative
baselines on three real-world OSN datasets. Exper-
iment results show that SocialCache outperforms
other caching strategies on three datasets. On the
largest Twitter dataset, SocialCache reduces the net-
work traffic volume by 6.40%, improves the cache
hit ratio by 14.22%, and reduces the operation time
by a factor of 20x, compared with the state-of-the-art
social-aware caching strategy called LRU-Social [3].

2. Method

In this section, we first introduce preliminary knowledge
in §2.1. After elaborating on the design of SocialCache in
§2.2, we describe how SocialCache protects user privacy
and maintains scalability in §2.3.

2.1. Preliminary

2.1.1. CDN Hierarchy. We build a three-layer CDN hi-
erarchy illustrated in Figure 1, which is widely used for
mainstream CDN service providers, like Alibaba [15], Aka-
mai [4] and Amazon [5]. Each CDN layer contains several
CDN nodes. Only adjacent CDN layers have data transmis-
sion, and cache contents are not shared within the CDN
nodes of the same layer [5]. The CDN nodes in the lower
CDN layer are closer to the users and provide low-latency
services. The selection of locations of higher-layer CDNs
is cost-conscious, with a relatively small number of CDN
nodes but better machine performance. Once a user’s request
is sent to the geographically nearest CDN node of the L1
CDN layer [17], SocialCache, which runs in every CDN
node, will handle all subsequent operations.

2.1.2. Actions: POST and VIEW. There are two major
request actions for OSN users: POST and VIEW [1] [18].
POST means a user publishes a post (e.g., a tweet) through
its OSN account, sharing it with others. VIEW is the activity
of browsing other users’ posts. We assume that each request
action is either POST or VIEW.

2.1.3. Social Connectivity Metrics. There are two kinds of
OSN graphs: a subscriber-publisher-oriented directed graph
(e.g., Twitter and Weibo) and a chatting-oriented undirected
graph (e.g., Facebook and WeChat). We focus on the kind
of directed graphs because where media files like pictures
and videos are extremely large and these OSNs are more
dependent on CDN services. To better utilize the social
connectivity information of the OSN graph, SocialCache

supports five representative social connectivity metrics [19]
[20] to represent the influence of each user:
In-degree: In-degree is a fundamental metric in an OSN
graph, identifying the number of a user’s followers. The
higher the in-degree is, the more followers the user has, and
the higher the exposure possibility of the user’s posts.
PageRank: PageRank is originally a website ranking algo-
rithm used by Google, which researchers extend to explain
a user’s influence [19]. A user with a high PageRank value
usually has an important impact.
Laplacian centrality: Laplacian centrality is defined as the
drop in the Laplacian energy of a graph when a node is
removed [21]. A user with higher Laplacian centrality who
leaves the social network will jeopardize the community
more severely.
Betweenness centrality: Betweenness centrality is another
important centrality metric on an OSN graph [22], which
measures each pair of nodes based on the shortest paths.
An important user on the spread of information flow in a
social network will have a high betweenness centrality. A
such user often serves as a bridge from one part of a graph
to another and tends to have a greater influence.
Effective size: Effective size is a concept in structural hole
theory [23]. Structural hole spanners who occupy important
positions will serve as bridges among different communities
in the social network, tending to have higher values of
effective size [20]. Effective size shows how many dif-
ferent active communities a user is connected to, ignoring
redundant connections and associating multiple connections
to the same community with one. Therefore, a user with
a higher effective size value will affect a wider range of
users. Moreover, compared with the other social connectivity
metrics, the calculation of effective size only requires the
information of a user’s ego network, without the information
of the whole OSN graph. This efficient calculation is more
practical and feasible, as well as better privacy-concerned.
Therefore, we choose effective size as the default social
connectivity metric for SocialCache.

2.2. System Design

The design paradigm of SocialCache is depicted in
Figure 1. It could be divided into two parts, i.e., POST
and VIEW, consistent with the two types of request actions.
For a POST action, SocialCache solves the insertion and
replacement of the cache and recursively sends requests
to the corresponding CDN nodes in higher CDN layers.
For a VIEW action, SocialCache handles the indexing and
updating of the cache and responses to the user.
POST: If a user publishes a post, the system will ask the
client first to calculate a Priority P with Equation 1. The
client will use four features to calculate the P .

P = W0 · S +W1 · M+W2 · D + T (1)

S is the social connectivity metric we calculated to
quantify the user’s influence in the OSN, which we have
discussed in §2.1.3. The feature M denotes the size of

2023 IEEE International Conference on Communications (ICC): SAC Social Networking Track

4932
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 20,2024 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

C

D𝓟𝑫 > 𝓟𝑪

Replace

POST
(e.g. Tweet)

Recursively update 𝒫 and
the corresponding cache

A B C

C Update

VIEW
(e.g. Browse Twitter)

𝓟𝑪 > 𝓟#

A B

Calculation
of Priority 𝒫

= + + +

Social
Connectivity

Content
Size

Geo
Distance Timestamp

Cache Miss Cache Hit

SocialCache

L2 CDN Layer

L3 CDN Layer
Recursively update 𝒫 and
the corresponding cache

L1 CDN Layer

Online Social Network

Figure 1. Architecture of SocialCache with a three-layer CDN hierarchy.

the media file transferred by this request, D represents the
reciprocal of the geographic distance between the user and
the nearest CDN node, and T is the timestamp when the
POST event is triggered. Three parameters W0, W1, and
W2, together determines the weights of the different fea-
tures. To strike a balance between accuracy and efficiency,
we use a classic heuristic algorithm called hill-climbing [24]
to fine-tune these parameters.

SocialCache majorly uses P to handle cache operations.
A CDN node has several elements named Eexist in its cache.
When a request arrives at a CDN node, the information and
content it carries are wrapped into a single element called
Ecoming. If the same media content as Ecoming exists in the
cache, regardless of which user publishes the media content,
the information of the content in the cache is updated
without consequent replacement operations. If the current
cache is not full, the insert operation is performed; if the
current cache is full, the Eexist with the lowest P is replaced
with Ecoming. Once the caching operation in the CDN node
is completed, the POST request will be recursively sent to
the corresponding node in a higher CDN layer. The details
are described in Algorithm 1.

VIEW: If a user views a post, the request will be directly
sent to the geographically nearest CDN node. If the post
exists in an Eexist, it is a cache hit event that updates Pnew.
Otherwise, it is a cache miss event. The VIEW request will
be recursively sent to the higher-level CDN node, with the
returned element Ecoming inserted into this cache like POST
action. See Algorithm 1 for the detailed workflow.

Algorithm 1: Workflow of SocialCache
Input: A Request RQ with Media HashID MH,

Request Action RA, Timestamp T , Priority P
Output: Operations OP

1 if RA == POST then // POST
2 Ecoming ← {key: MH, value: P , T };
3 if MH ∈ Cache then
4 Eexist ← Cache.Find({key: MH});
5 Eexist ← Ecoming;
6 else
7 if Cache.Count(Eexist) == Cache.Size() then
8 Cache.Remove(Eexist with minimum P);
9 end

10 Cache.Insert(Ecoming);
11 end
12 OP → Send RQ to higher CDN layer;
13 else // VIEW
14 if MH In Cache then // Cache Hit
15 Eexist ← Cache.Find({key: MH});
16 Pnew ← Calculate with new T ;
17 Eexist ← Cache.Update({key: MH, value:

Pnew, T });
18 OP → Send Eexist to lower CDN layer;
19 else // Cache Miss
20 OP → Send RQ to higher CDN layer;
21 end
22 end

2.3. Privacy and Scalability

In the scenario of self-operated CDNs, SocialCache
protects the user’s privacy and maintains scalability. On the
one hand, OSN users’ requests are transmitted in the self-
operated CDN, and data logs are recorded internally. On the
other hand, the default social connectivity metric is effective
size, which calculation requires only the data of an OSN
user and its ego network. The selection of effective size
also ensures scalability because the graph size of a user’s
ego network is usually small enough to calculate fast [20].

However, although OSN providers tend to use self-
hosted CDNs, commercial CDNs are still indispensable in
reality [5]. When requests are forwarded to commercial
CDNs, the information carried by the requests will be at risk
of being exposed [2]. The design of SocialCache considers
such scenarios, which also carefully protect users’ privacy
and maintain scalability in sophisticated hybrid CDN scenar-
ios. In a request, P is the only extra information that can be
computed locally from the user side. It masks the origin data,
which is almost impossible to deduce back. Meanwhile, if
a commercial CDN node receives a request, it can operate
as normally as it handles other requests without additional
modifications, just needing to ignore the extra information
P . It is difficult for a commercial CDN to deanonymize user
data by computing the metric P , because W0, W1, W2 and
S in the calculation formula of P are almost impossible
for CDN nodes to obtain. Therefore, SocialCache maintains
scalability for different scenarios without introducing obvi-
ous risks of privacy exposure.

2023 IEEE International Conference on Communications (ICC): SAC Social Networking Track

4933
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 20,2024 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

3. Experiment

In this section, we conduct a series of experiments to
demonstrate the usefulness of SocialCache. We first intro-
duce the datasets in §3.1. Afterward, in §3.2, we present
the experiment’s setup, including environment configuration,
baseline methods, and evaluation metrics. Finally, the de-
scription and rigorous interpretation of the results will be
illustrated in §3.3.

3.1. Datasets

For the scenario of self-operated CDNs of OSNs, a
realistic and holistic dataset requires a social network graph
and detailed information on each request. Unfortunately,
such datasets could not be easily released to the public
since they are highly related to OSN providers’ confidential
information and user privacy. As a result, many researchers
in the field have to use synthetical datasets [3] [18]. Existing
data generation methods are broadly idealistic and primarily
based on randomness and theoretical mathematical distribu-
tions, lacking actual datasets as factual support. To better
validate SocialCache, we use three real-world datasets:
TwitterSmall: We extract the largest ego network from a
real Twitter user network dataset [25] as the social network,
with 223 nodes and 4,481 directed edges. The following
configurations are applied to both TwitterSmall and Twit-
terLarge datasets. The information carried out by request
includes the user’s ID, timestamp, request action, geoloca-
tion, and the media file size specific only to a POST request.
We construct the total number of requests per user using the
Zipf distribution (α=1.765, β=4.888) [26], defined as:

Zipf(x) = βx−α (2)

The time interval between the requests obeys the LogNormal
distribution (µ=1.789, σ=2.366) [26], given by:

LogNormal(x) =
1√
2πxσ

e−
(ln x−µ)2

2σ2 (3)

The ratio of VIEW actions to POST actions in all requests
is 95:5 [18]. For geolocation information, we obtained the
proportion of Twitter users in different countries in 20221,
placing each user to the capital of the corresponding country.
The media file sizes of all POST requests obey a trace-driven
distribution, where we run the “wget” command in parallel
to access the URLs of 26,952,281 media files from another
Twitter dataset [27]. Finally, we sort all users’ requests
chronologically into a sequence, totaling 37,278.
TwitterLarge: We choose a larger Twitter dataset [25] to
validate the reliability of our method on a large scale. The
network has 11,088 nodes and 2,420,766 directed edges. The
generation configurations and process of the requests are
the same as that of the TwitterSmall dataset, which finally
produces a sequence of requests of length 342,542.
Brightkite: We select the largest community as the OSN
graph from an OSN dataset Brightkite [28] with detailed

1. https://www.statista.com/statistics/242606

user login times and geographic locations, containing 5,773
nodes and 44,302 edges. The data ranges from January
1st, 2010, to June 1st, 2010. The media file sizes and
access traces were generated according to the TwitterSmall
configuration, totaling 749,558 requests.

3.2. Setup

3.2.1. Configuration. To emulate a realistic CDN environ-
ment, we utilize Mininet2 as the network simulator, deploys
on a host in CloudLab3 with 40 CPU cores and 157GB
memory, and runs Ubuntu 18.04 LTS. SocialCache is de-
ployed based on Mininet, with a three-layer CDN hierarchy.
Furthermore, we obtain a realistic network topology through
real-world network measurements. We also fine-tune the pa-
rameters in Equation 1 using a hill-climbing algorithm [24].
Measurement: We select 29 Points of Presence (PoPs)
from Google Cloud Platform, distributed worldwide on five
continents, to build a realistic network topology for the CDN
hierarchy discussed in §2.1.1. We deploy one cloud machine
on each PoP for measuring network conditions, from May
15th to May 29th, 2022. For each pair of cloud machines,
we measure the average results over one minute using Ping
instruction at a time and a total of 10 times at different
periods, using the average results as the latency and the loss
rate. In addition, we use iPerf3 instruction to measure the
network bandwidth between the two cloud machines during
idle hours, and take the average result of 10 times as the set
network bandwidth. The geographic location of CDN nodes
placement refers to Artemis [29].
Parameter Selection: We adopt a heuristic algorithm named
hill-climbing [24] to select the parameters W0, W1 and W2

of Equation 1. To demonstrate the scalability, we select the
TwitterSmall dataset for parameter selection and apply the
parameters to the TwitterLarge dataset.

3.2.2. Baselines. We select four representative caching
strategies as baselines and compare SocialCache with them:

1) RAND. When a cache miss event happens, and the
cache is full, a random Eexist will be replaced.

2) FIFO. The content comes into the cache in order,
and the first Eexist is selected when replacing.

3) LRU. Contents are maintained according to the visit
time, and replace the earliest visited Eexist.

4) LRU-Social. LRU-Social [3] is an advanced base-
line. It uses the spreading power of each user calcu-
lated by the Susceptible-Infected-Recovered (SIR)
spreading model to extend the retention time of the
contents posted by significant users.

3.2.3. Metrics. We use two typical metrics to evaluate the
performance of our experiments:

1) Network traffic volume. Network traffic volume
is defined by the sizes of all files transferred

2. http://mininet.org
3. https://www.cloudlab.us

2023 IEEE International Conference on Communications (ICC): SAC Social Networking Track

4934
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 20,2024 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

TABLE 1. NETWORK TRAFFIC VOLUME (GB) ON DIFFERENT DATASETS AND CDN LAYERS

Method TwitterSmall TwitterLarge Brightkite
L1 CDN L2 CDN L3 CDN All L1 CDN L2 CDN L3 CDN All L1 CDN L2 CDN L3 CDN All

RAND 3.50 5.91 2.60 12.02 35.78 66.63 32.81 135.22 97.51 139.81 69.61 306.93
FIFO 3.01 4.13 1.31 8.45 33.98 61.50 29.48 124.96 71.55 73.92 29.68 175.15
LRU 2.94 3.38 0.63 6.95 34.65 61.12 28.43 124.22 70.17 72.55 29.68 172.41

LRU-Social 2.94 3.38 0.63 6.95 34.60 61.06 28.42 124.08 81.78 104.62 50.15 236.55
SocialCache 2.47 2.90 0.61 5.99 33.31 57.09 25.74 116.14 67.61 69.99 29.68 167.28

TABLE 2. NETWORK TRAFFIC VOLUME (GB) FOR DIFFERENT SOCIAL
CONNECTIVITY METRICS ON DIFFERENT CDN LAYERS

Social Connectivity Metric Network Traffic Volume (GB)
L1 CDN L2 CDN L3 CDN All

In-degree 33.32 57.42 26.05 116.79
PageRank 33.44 57.64 26.16 117.24
Laplacian centrality 33.47 57.82 26.31 117.61
Betweenness centrality 33.43 57.78 26.31 117.52
Effective size 33.31 57.09 25.74 116.14
Standard deviation 0.07 0.27 0.21 0.54

through the CDN. Network traffic cost accounts
for a sizable portion of total CDN spending. Re-
ducing network traffic is our primary goal of So-
cialCache’s optimization, which saves operational
costs of about $0.085 per GB [14] and alleviates
load pressure [13] for CDN service providers.

2) Cache hit ratio. Cache hit ratio is the percentage of
successfully served requests in the cache. A higher
cache hit ratio means the caching strategy performs
better, due to users receiving results faster [3] and
fewer requests being transferred through the CDN.

3.3. Results

3.3.1. Network Traffic Volume. We evaluate the perfor-
mance of network traffic volume from perspectives including
datasets, CDN layers, and social connectivity metrics.
Datasets: In Table 1, experiment results show that Social-
Cache outperforms four baselines for the network traffic
volume metric on different datasets. Compared with the
second-best results for each dataset, SocialCache consid-
erably reduces network traffic volume by 13.81%, 6.40%,
and 2.98%. Although LRU and LRU-Social are generally
better than FIFO and RAND, they still have a large gap
with SocialCache’s optimization of network traffic volume.
It shows that SocialCache has strong generalizability and
remarkable optimization effects on different datasets.
CDN layers: SocialCache’s advantage of network traffic
volume savings on different CDN layers is also significant,
displayed in Table 1. Taking the TwitterLarge dataset as
an example, compared with the second-best method LRU-
Social, SocialCache reduces 3.73%, 6.50%, and 9.43% for
network traffic volume in L1, L2, and L3 CDN layers.
Social connectivity metrics: We compare the results of
SocialCache with different social connectivity metrics il-
lustrated in Table 2. The results show that the standard
deviations of SocialCache using different social connectivity
metrics is small, which means a similar impact on network

traffic. SocialCache using effective size performs the best,
with a visible advantage in network traffic volume reduction.
This demonstrates the usefulness of the effective size that
SocialCache chooses by default.

3.3.2. Cache Hit Ratios. We evaluate the performance of
cache hit ratios for different caching strategies and datasets,
displaying the results in Table 3. SocialCache outperforms
four baselines on three datasets, maintaining high cache hit
ratios. This is because SocialCache can provide superior
cache replacement using factual social connectivity informa-
tion and actual file size distribution. The conclusion of the
cache hit ratio matches our design expectations. SocialCache
prioritizes reducing network traffic volume while trying to
maintain high cache hit ratios.

3.3.3. Operation Time. We define the total time of caching
operations for all CDN nodes as the operation time, where
less operation time means higher efficiency [13]. As shown
in Table 3, the baselines RAND, FIFO, and LRU are rel-
atively simple with low time complexity, hence they have
relatively short operation times. LRU-Social takes extraor-
dinary extra time than other methods because its inherent
logic requires time-consuming enumeration for each request,
which is not practical for large-scale use. Although So-
cialCache is not that straightforward, the lowest operation
counts result from the highest cache hit ratio, enabling
overall operation times equivalent to FIFO and LRU, with
negligible overhead. This is because, in the specific imple-
mentation of SocialCache, we introduce a priority queue to
accelerate the process of fetching the minimum P value in
the current cache, which reduces the time complexity from
O(C) to O(log2 C), where C is the current cache size.

4. Conclusion and Future Work

In this paper, we propose SocialCache, a pervasive
social-aware caching strategy for the emerging trend of
using self-operated CDNs of OSNs. SocialCache leverages
different types of social connectivity information for CDN
optimization. It reduces network traffic volume while main-
taining high cache hit ratios, further saving service costs
and uplifting user experience quality. The design of So-
cialCache protects user privacy and maintains scalability.
We implement SocialCache on the Mininet with a main-
streaming three-layer CDN hierarchy, real-world network
measurements, and parameter selection using hill-climbing.
The improvement of SocialCache is evident in three real-
world OSN datasets and different scenarios. Experiments

2023 IEEE International Conference on Communications (ICC): SAC Social Networking Track

4935
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 20,2024 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

TABLE 3. CACHE HIT RATIO AND OPERATION TIME ON DIFFERENT DATASETS

Method Cache Hit Ratio (%) Operation Time (s)
TwitterSmall TwitterLarge Brightkite TwitterSmall TwitterLarge Brightkite

RAND 14.60 1.95 36.01 3.76 37.60 90.08
FIFO 33.77 7.34 71.23 3.30 36.79 67.38
LRU 48.40 9.03 71.77 3.40 38.71 73.02

LRU-Social 48.39 9.07 48.99 6.13 874.65 32463.93
SocialCache 48.46 10.36 71.81 3.46 48.38 69.53

show that SocialCache vastly reduces network traffic volume
and maintains high cache hit ratios with low computational
overhead. Experiments also demonstrate that SocialCache is
a promising caching strategy for CDNs with pervasive and
practical implications.

Our method represents clear advantages, and there still
exists room for further forecasting improvement. A possible
future direction is to explore the dynamic evolution of
the social graph and incorporate more datasets to analyze
under different scenarios. For parameter selection, advanced
heuristic methods like Artificial Bee Colony [30] and recent
machine learning algorithms such as Deep Reinforcement
Learning [31], offer broad prospects for future work.

References

[1] L. Jin, Y. Chen, T. Wang et al., “Understanding User Behavior in On-
line Social Networks: A Survey,” IEEE Communications Magazine,
vol. 51, no. 9, pp. 144–150, 2013.

[2] K. Wang, J. Zhang, G. Bai et al., “It’s Not Just the Site, It’s the Con-
tents: Intra-domain Fingerprinting Social Media Websites Through
CDN Bursts,” in Proceedings of WWW, 2021.

[3] A. Ghasemi and A. Ahmadi, “Cache Management in Content Delivery
Networks Using the Metadata of Online Social Networks,” Computer
Communications, vol. 189, pp. 11–17, 2022.

[4] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: a
platform for high-performance internet applications,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[5] J. Yang, A. Sabnis, D. S. Berger et al., “C2DN: How to Harness Era-
sure Codes at the Edge for Efficient Content Delivery,” in Proceedings
of USENIX NSDI, 2022.

[6] Z. Wang, W. Zhu, M. Chen et al., “CPCDN: Content Delivery
Powered by Context and User Intelligence,” IEEE Transactions on
Multimedia, vol. 17, no. 1, pp. 92–103, 2014.

[7] K. Akpinar and K. A. Hua, “PPNet: Privacy Protected CDN-ISP Col-
laboration for QoS-Aware Multi-CDN Adaptive Video Streaming,”
ACM Transactions on Multimedia Computing, Communications, and
Applications, vol. 16, no. 2, pp. 1–23, 2020.

[8] F. Chen, K. Guo, J. Lin et al., “Intra-cloud Lightning—Building
CDNs in the Cloud,” in Proceedings of IEEE INFOCOM, 2012.

[9] S. Scellato, C. Mascolo, M. Musolesi et al., “Track Globally, Deliver
Locally: Improving Content Delivery Networks by Tracking Geo-
graphic Social Cascades,” in Proceedings of WWW, 2011.

[10] B. Fan, Y. Jiang, F. Zheng et al., “Social-aware Cooperative Caching
in Fog Radio Access Networks,” in Proceedings of IEEE ICC, 2022.

[11] Y. Wang, X. Liu, D. Chu et al., “EarlyBird: Mobile Prefetching of
Social Network Feeds via Content Preference Mining and Usage
Pattern Analysis,” in Proceedings of ACM MobiHoc, 2015.

[12] C. Wu, X. Chen, W. Zhu et al., “Socially-Driven Learning-Based
Prefetching in Mobile Online Social Networks,” IEEE/ACM Trans-
actions on Networking, vol. 25, no. 4, pp. 2320–2333, 2017.

[13] K. Zhou, S. Sun, H. Wang et al., “Improving Cache Performance for
Large-Scale Photo Stores via Heuristic Prefetching Scheme,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 9, pp.
2033–2045, 2019.

[14] Z. Zheng, Y. Ma, Y. Liu et al., “XLINK: QoE-Driven Multi-Path
QUIC Transport in Large-scale Video Services,” in Proceedings of
ACM SIGCOMM, 2021.

[15] J. Li, Z. Li, R. Lu et al., “LiveNet: A Low-Latency Video Transport
Network for Large-Scale Live Streaming,” in Proceedings of ACM
SIGCOMM, 2022.

[16] H. Hu, Y. Wen, T.-S. Chua et al., “Community based effective
social video contents placement in cloud centric CDN network,” in
Proceedings of IEEE ICME, 2014.

[17] M. Zhou, T. Guo, Y. Chen et al., “Polygon: A QUIC-Based CDN
Server Selection System Supporting Multiple Resource Demands,” in
Proceedings of ACM/IFIP Middleware, Industry Track, 2021.

[18] C. Bernardini, T. Silverston, and O. Festor, “Socially-Aware Caching
Strategy for Content Centric Networking,” in Proceedings of IFIP
Networking, 2014.

[19] Q. Gong, Y. Chen, X. He et al., “Cross-Site Prediction on Social
Influence for Cold-Start Users in Online Social Networks,” ACM
Transactions on the Web, vol. 15, no. 2, pp. 1–23, 2021.

[20] Z. Lin, Y. Zhang, Q. Gong et al., “Structural Hole Theory in Social
Network Analysis: A Review,” IEEE Transactions on Computational
Social Systems, vol. 9, no. 3, pp. 724–739, 2022.

[21] X. Qi, E. Fuller, Q. Wu et al., “Laplacian centrality: A new centrality
measure for weighted network,” Information Sciences, vol. 194, pp.
240–253, 2012.

[22] L. C. Freeman, “A Set of Measures of Centrality Based on Between-
ness,” Sociometry, pp. 35–41, 1977.

[23] R. S. Burt, “Structural Holes and Good Ideas,” American Journal of
Sociology, vol. 110, no. 2, pp. 349–399, 2004.

[24] J. Hill and K. Fu, “A learning control system using stochastic ap-
proximation for hill-climbing,” in Proceedings of IEEE JACC, 1965.

[25] J. J. McAuley and J. Leskovec, “Learning to discover social circles
in ego networks,” in Proceedings of NIPS, 2012.

[26] F. Benevenuto, T. Rodrigues, M. Cha et al., “Characterizing User
Behavior in Online Social Networks,” in Proceedings of ACM IMC,
2009.

[27] Q. Gong, J. Zhang, X. Wang et al., “Identifying Structural Hole
Spanners in Online Social Networks Using Machine Learning,” in
Proceedings of ACM SIGCOMM, Posters and Demos, 2019.

[28] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and Mobility:
User Movement in Location-Based Social Networks,” in Proceedings
of ACM KDD, 2011.

[29] X. Li, Y. Chen, M. Zhou et al., “Artemis: A Latency-Oriented Naming
and Routing System,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 12, pp. 4874–4890, 2022.

[30] D. Karaboga and B. Basturk, “A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–
471, 2007.

[31] A. Ben-Ameur, A. Araldo, and T. Chahed, “Cache Allocation in
Multi-Tenant Edge Computing via online Reinforcement Learning,”
in Proceedings of IEEE ICC, 2022.

2023 IEEE International Conference on Communications (ICC): SAC Social Networking Track

4936
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 20,2024 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

