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Content Delivery Network
CDNs cache content from the origin server on geographically 

distributed CDN cache servers to reach users faster.

User CDN server Origin server
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Caching Strategy with Traffic Volume

Replace 
which content

Full cache

D
New content

Distributed CDN cache servers are easily to be fully occupied 

Metric: traffic volume for
synchronization, cache hit ratio,
validity period…

Large amount of OSN data 

A
B
C
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Motivation: Cache Hit and Social Influence 

On YouTube, the more 
followers a user has, 
the more views their uploaded 
video content receives [1]

Motivating: Preferentially caching content from users with 
high social influence can increase the cache hit ratio and 
reduce traffic for synchronization.

[1] C. Canali, M. Colajanni, and R. Lancellotti. “Characteristics and evolution of content popularity and user relations in social networks.” 
In Proc. of ISCC, 2010.
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SocialCache: Social-Aware Caching Strategy

A
B
C

Replace cache based on
𝑷𝒓𝒊𝒐𝒓𝒊𝒕𝒚 𝒫

A metric calculated with 
social connectivity

Full cache

D
New content

If𝒎𝒊𝒏 𝑨,𝑩, 𝑪 = 𝑪 𝒂𝒏𝒅 𝑷𝒓𝒊𝒐𝒓𝒊𝒕𝒚𝑫 > 𝑷𝒓𝒊𝒐𝒓𝒊𝒕𝒚𝑪
Then, D replace C in cache
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Calculation of Priority 𝒫

Calculation of 
Priority 𝒫 = + + +

Social 
Connectivity

Content
Size

Geo
Distance

Timestamp

𝑓( )

• Social connectivity 𝓢: user’s influence in the OSN

• Content size 𝓜: size of the file transferred by this request

• Geo Distance 𝓓: geographic distance between the user and the 

nearest CDN node

• Timestamp 𝓣: time that this content is created

*We use heuristic algorithm called hill-climbing [1] to fine-tune these weight parameters.
[1] J. Hill and K. Fu, “A learning control system using stochastic approximation for hill-climbing,” in Proc. of JACC, 1965.

=
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Two Caching Situations

C

D𝓟𝑫 > 𝓟𝑪

Replace
A B C

C Update
𝓟𝑪 > 𝓟#

A B

Cache Miss Cache Hit

CDN server

POST
(e.g. Tweet)

VIEW
(e.g. Browse Twitter)/
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Evaluation with Real-world Datasets

Real OSN
• Twitter[1]: 11,088 nodes and 2,420,766 directed edges
• Brightkite[2]: 5,773 nodes and 44,302 edges

Real CDN requests
• CDN requests from Twitter users[3]: 26,952,281 media files

SocialCache is evaluated on 
real-world OSN and CDN requests!

[1] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego networks,” in Proc. of NIPS, 2012. 
[2] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and Mobility: User Movement in Location-Based Social Networks,” in Proc. of KDD, 2011.
[3] Q. Gong, J. Zhang, X. Wang et al., “Identifying Structural Hole Spanners in Online Social Networks Using Machine Learning,” in Proc. of 
SIGCOMM, Posters and Demos, 2019.
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Production and SOTA Baselines

Method Usage Temporal
info

Social
info

Social-aware metric

RAND × × /
FIFO Production × × /
LRU √ × /

LRU-Social State of the Art
(SOTA)

√ √ Susceptible-Infected-
Recovered (SIR)
spreading model

SocialCache
(ours)

/ √ √ Social connectivity,
e.g., effective size,

PageRank, Laplacian 
centrality
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Reduced Network Traffic within CDN

Method Twitter Brightkite
RAND 135.22 GB 306.93 GB
FIFO 124.96 GB 175.15 GB
LRU 124.22 GB 172.41 GB

LRU-Social 124.08 GB 236.55 GB

SocialCache 116.14 GB
(↓ 14.11%)

167.28 GB
(↓ 45.50%)

*operational costs is $0.085/GB[1]
[1] Z. Zheng, Y. Ma, Y. Liu et al., “XLINK: QoE-Driven Multi-Path QUIC Transport in Large-scale Video Services,” in Proc. of SIGCOMM, 2021.

SocialCache can save significant network traffic cost within CDN
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Different Social Connectivity

Social Connectivity Metric Network Traffic Volume (GB)
In-degree 116.79
PageRank 117.24

Laplacian centrality 117.61
Betweenness centrality 117.52

Effective size 116.14

Standard deviation is 0.54

Means that different social connectivity has similar performance.



12

More Considerable Social-Aware

Method
Twitter Brightkite

Network 
traffic (GB)

Operation 
Time (s)

Cache Hit 
Ratio (%)

Network 
traffic (GB)

Operation 
Time (s)

Cache Hit 
Ratio (%)

LRU-Social
(SIR model)

124.08 874.65 9.07 236.55 32463.93 48.99

SocialCache
(Effective Size)

116.14 48.38
(LRU: 38.71)

10.36 167.28 69.53
(LRU:73.02)

71.81

• Network traffic and Cache hit ratio: SocialCache considers geographic 

location and content size as well, and ignores redundant connections.
• Operation time: LRU-social is time-consuming with enumeration of SIR 

model. SocialCache performs faster and is as efficient as LRU.
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SocialCache:
A Pervasive Social-Aware Caching Strategy for Self-Operated

Content Delivery Networks of Online Social Networks

Thanks for your listening!

1. A caching strategy with considering social connectivity information

2. Evaluating SocialCache on real-world OSN and CDN requests datasets

3. Achieving reduced network traffic and operation time

Priority 𝒫 of 
CDN cache = + + +

Social Connectivity Content
Size

Geo
Distance Timestamp

𝑓( )
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Backup Slide – POST and VIEW

Recursively update 𝒫 and the 
corresponding cache

L2 CDN Layer

L3 CDN Layer
Recursively update 𝒫 and the 
corresponding cache

L1 CDN Layer

C

D𝓟𝑫 > 𝓟𝑪

Replace

A B C

C Update
𝓟𝑪 > 𝓟#

A B

Cache Miss Cache HitPOST
(e.g. Tweet)

will recur to L3

VIEW
(e.g. Browse Twitter)

only happens within the L1
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Backup Slide: Combine OSN and CDN Requests

Real OSN
• Twitter[1]: 11,088 nodes and 2,420,766 directed edges, 342,542 requests
• Brightkite[2]: 5,773 nodes and 44,302 edges, 749,558 requests.

Real CDN requests
• CDN requests from Twitter users[3]: 26,952,281 media files

For each evaluated dataset
1. # of requests/user: Zipf distribution(α = 1.765, β = 4.888)

2. Time interval between the requests: LogNormal distribution (µ = 1.789, σ = 2.366)

[1] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego networks,” in Proc. of NIPS, 2012. 
[2] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and Mobility: User Movement in Location-Based Social Networks,” in Proc. of KDD, 2011.
[3] Q. Gong, J. Zhang, X. Wang et al., “Identifying Structural Hole Spanners in Online Social Networks Using Machine Learning,” in Proc. of 
SIGCOMM, Posters and Demos, 2019.


