
Artemis: A Latency-Oriented Naming
and Routing System

Xuebing Li , Yang Chen , Senior Member, IEEE, Mengying Zhou, Tiancheng Guo, Chenhao Wang,

Yu Xiao ,Member, IEEE, Junjie Wan, and Xin Wang,Member, IEEE

Abstract—Today, Internet service deployment is typically implemented with server replication at multiple locations. Domain name

system (DNS), which translates human-readable domain names into network-routable IP addresses, is typically used for distributing

users to different server replicas. However, DNS relies on several network-based queries and the queries delay the connection setup

process between the client and the server replica. In this article, we propose Artemis, a practical low-latency naming and routing

system that supports optimal server (replica) selection based on user-defined policies and provides lower query latencies than DNS.

Artemis uses a DNS-like domain name-IP mapping for replica selection and achieves low query latency by combining the name

resolution process with the transport layer handshake process. In Artemis, all server replicas at different locations share the same

anycast IP address, called Service Address. Clients use the Service Address to establish a transport layer connection with the server.

The client’s initial handshake packet is routed over an overlay network to reach the optimal server. Then the server migrates the

transport layer connection to its original unicast IP address after finishing the handshake process. After that, service discovery is

completed, and the client communicates with the server directly via IP addresses. To validate the effectiveness of Artemis, we evaluate

its performance via both real trace-driven simulation and real-world deployment. The result shows that Artemis can handle a large

number of connections and reduce the connection setup latency compared with state-of-the-art solutions. More specifically, our

deployment across 11 Google data centers shows that Artemis reduces the connection setup latency by 39.4% compared with DNS.

Index Terms—Service discovery, name resolution, overlay routing, anycast

Ç

1 INTRODUCTION

LOW latency is a critical requirement for today’s Internet
services. Amazon found that a reduction of 100ms in page

load time (PLT) contributes to an increment of 1% in reve-
nue [1]. Similarly, Google reported that a 2s delaymight cause
a 4.3% loss in revenue per visit [2]. Servers are expected to be
deployed close to the clients to reduce network latency. One
of the solutions is to place replica servers worldwide so that
the clients can always connect to their nearby servers. In the

scenario where a set of replica servers sharing the same token
(e.g., domain name and IP address) are available at multiple
locations, it is essential to take into account the difference in
the latency between the client and each replica, when decid-
ing which replica to select for serving a request. Such a pro-
cess of replica selection is called service discovery.

Today’s service discovery mechanisms are either DNS-
based or anycast-based. The DNS-based method redirects
clients to replica servers by returning different IP addresses
associated with the same domain name. This method pro-
vides flexibility for domain names. However, it causes sig-
nificant latencies because the name lookup process requires
recursive network-based queries from the client to a group
of name servers, as shown in Fig. 1a. A previous measure-
ment study showed that the DNS query latency typically
ranges from 1ms to 5s [3], which consumes up to 13% of the
PLT when browsing the Internet [4]. The anycast-based
method selects replica servers based on minimal routing
hops. The major drawback is the lack of application-level
controls, e.g., load balancing [5]. Although DNS is not being
used for replica selection in anycast routing, DNS is still
generally required for name lookup [6], meaning that the
latency caused by DNS name lookup cannot be ignored. To
solve these challenges, we aim at developing a service dis-
covery mechanism that would utilize the advantages of
both anycast and DNS to shorten the overall latency.

In this paper, we propose Artemis, a novel latency-ori-
ented naming and routing system for service discovery.
Artemis supports 1) DNS-like name resolution, where all
replica servers are exposed to the clients as a single human-
readable name, 2) optimal replica selection, where the

� Xuebing Li is with the School of Computer Science, Fudan University,
Shanghai 200438, China, and the Shanghai Key Lab of Intelligent Informa-
tion Processing, Fudan University, Shanghai 200438, China, and also
with the Department of Communications and Networking, Aalto Univer-
sity, 02150 Espoo, Finland. E-mail: xbli16@fudan.edu.cn.

� Yang Chen, Mengying Zhou, Tiancheng Guo, Chenhao Wang, and Xin
Wang are with the School of Computer Science, Fudan University, Shang-
hai 200438, China, and also with the Shanghai Key Lab of Intelligent Infor-
mation Processing, Fudan University, Shanghai 200438, China.
E-mail: {chenyang, myzhou19, tcguo20, xinw}@fudan.edu.cn, chenhao
wang21@m.fudan.edu.cn.

� Yu Xiao is with the Department of Communications and Networking,
Aalto University, 02150 Espoo, Finland. E-mail: yu.xiao@aalto.fi.

� Junjie Wan is with Huawei Technologies Co. Ltd., Shenzhen 518129,
China. E-mail: wanjunjie2@huawei.com.

Manuscript received 4 April 2021; revised 30 August 2022; accepted 30
August 2022. Date of publication 16 September 2022; date of current version
29 September 2022.
This work was supported in part by the National Natural Science Foundation
of China under Grant 61971145, in part by HUAWEI research collaboration
under Grant YBN2019125184, and in part by the Academy of Finland under
Grant 317432.
(Corresponding author: Yang Chen.)
Recommended for acceptance by D. Medhi.
Digital Object Identifier no. 10.1109/TPDS.2022.3207189

4874 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4298-0935
https://orcid.org/0000-0003-4298-0935
https://orcid.org/0000-0003-4298-0935
https://orcid.org/0000-0003-4298-0935
https://orcid.org/0000-0003-4298-0935
https://orcid.org/0000-0003-4749-3060
https://orcid.org/0000-0003-4749-3060
https://orcid.org/0000-0003-4749-3060
https://orcid.org/0000-0003-4749-3060
https://orcid.org/0000-0003-4749-3060
https://orcid.org/0000-0002-4517-3779
https://orcid.org/0000-0002-4517-3779
https://orcid.org/0000-0002-4517-3779
https://orcid.org/0000-0002-4517-3779
https://orcid.org/0000-0002-4517-3779
mailto:xbli16@fudan.edu.cn
mailto:chenyang@fudan.edu.cn
mailto:myzhou19@fudan.edu.cn
mailto:tcguo20@fudan.edu.cn
mailto:xinw@fudan.edu.cn
mailto:Shanghai Key Lab of Intelligent Information ProcessingFudan University12478Shanghai200438China
mailto:Shanghai Key Lab of Intelligent Information ProcessingFudan University12478Shanghai200438China
mailto:yu.xiao@aalto.fi
mailto:wanjunjie2@huawei.com

discovered server is optimal for a client based on a configu-
rable selection criterion, and 3) low service discovery
latency, where name resolution does not cost additional
query delay. Since Artemis is a service discovery solution
rather than a global unique naming system, e.g., DNS, we
define the name space as any lexical phase to avoid the con-
flict with the widely-used DNS name space. In the following
of this paper, we use “DNS name” and “Artemis name” to
represent the name used in DNS and Artemis, respectively.
Because of the isolation with the DNS name space, Artemis
is targeting application scenarios supporting dual name
spaces. For example, in mobile apps, developers can hard-
code the logic of switching between DNS and Artemis in
the client code when accessing the app servers deployed in
Artemis. For demonstration, we by default choose the opti-
mal replica based on two commonly used performance met-
rics, i.e., end-to-end latency and server load. Our evaluation
verifies the commonly used assumption that the delays
occurred outside data centers (i.e., between clients and data
centers) dominate the end-to-end delay [7], [8], [9]. There-
fore, this work focuses on shortening the above-mentioned
routing-induced latencies.

The architecture of Artemis is illustrated in Fig. 1b. We
introduce an overlay network composed of a set of Service
Dispatchers in different data centers. A Service Dispatcher
works as a proxy for all the replicas located within the same
data center. A Service Dispatcher is identified with a Service
Address, an anycast IP address composed of a predefined
anycast prefix and a network suffix calculated from the
Artemis name. It accepts the clients’ packets and forwards
each request to the optimal replica through overlay routing,
which is determined by customizable selection criteria, e.g.,
minimal end-to-end latency and low server load. Instead of
forwarding the packets directly to an optimal replica as
done in [10], we implement redundancy routing into the
overlay network of service dispatchers to allow the same
handshake request to be sent to multiple replicas simulta-
neously. The replica processes the handshake request and
generates a response to finish the connection setup. The
server embeds its unicast IP address in the handshake
response so that the subsequent packets are transmitted
directly between the client and the server, reducing the load
of the overlay network. This process is called late binding.

Artemis is compatible with any transport layer protocol
that supports late binding, e.g., QUIC [11] and M-TCP [12].
In this paper, we build a prototype of Artemis based on the
state-of-the-art transport protocol QUIC and deploy it on
Google Cloud. We choose QUIC because it allows changing

the server’s IP address without interrupting a connection,
making it easier to implement late binding.

The key contributions of this paper are summarized
below:

� We propose Artemis, a novel latency-oriented nam-
ing and routing system. According to our evalua-
tion of a real-world deployment, Artemis shortens
the connection setup latency (i.e., 39.4% reduction
in the handshake latency) compared with DNS-
based solutions since it removes the need for
name resolution through dedicated query packets.
Compared with anycast-based solutions, Artemis
reduces the transmission latency by 25.2% by sup-
porting customized routing policies at the stage of
name resolution.

� We introduce Service Dispatchers, which bind a cli-
ent with its best suitable replica server based on cus-
tom end-user-mapping policies. We present the late
binding mechanism, which binds a client with a
server with an anycast address, overcoming the
uncertainty caused by anycast routing. The late bind-
ing supports the client-side cache of the client-server
binding and supports invalidation of the cache from
the server-side.

A preliminary version of this paper has been published
in [10]. The new contributions mainly come from the imple-
mentation and feasibility analysis of the real-world deploy-
ment of Artemis. As a representative application scenario of
Artemis, cloud services will benefit from deploying Artemis
by 1) an easy way to manage IP addresses, 2) a fast name
lookup service, 3) and native support in server duplication
for scalability. The real-world evaluation in Section 5.3 dem-
onstrates the feasibility of deploying Artemis in commercial
clouds, e.g., Google Cloud, and its effectiveness in provid-
ing low-latency naming and routing for replica servers
serving global clients.

The rest of the paper is organized as follows. Section 2
gives an overview of different replica selection strategies.
Sections 3 and 4 describe the system design and implemen-
tation, respectively. The system evaluation is presented in
Section 5. A brief discussion is given in Section 6. Finally,
Section 7 concludes this article.

2 RELATED WORK

In this section, we review the previous works related to
three categories of server selection strategies. A comparison

Fig. 1. Workflow of DNS and Artemis.

LI ETAL.: ARTEMIS: A LATENCY-ORIENTED NAMING AND ROUTING SYSTEM 4875

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

between Artemis and state-of-the-art solutions is summa-
rized in Table 1.

2.1 DNS-Based Solutions

DNS is an Internet service that maps human-readable
names into machine-readable IP addresses [15], [16]. In
DNS-based solutions, authoritative nameservers monitor
the condition of application servers, e.g., server load, and
keep track of the routing information from the servers to the
rest of the Internet, e.g., end-to-end latency. According to
the collected information and the service discovery policy,
the authoritative nameservers determine the best replica
server for each client. Akamai [14] adopts a DNS-based
solution, with the support of EDNS Client Subnet
(ECS) [17], in its content delivery network (CDN) for load
balancing. Google employs similar technology in its fronted
serving architecture [18]. The advantage is that the name-
server has an overview of the whole system. It can select
any replica for the client and take application-level informa-
tion into account. However, the disadvantage is that the
DNS query brings additional latency to the connection
setup process.

Artemis combines anycast’s fast connection setup with
DNS’s controllability. As a result, Artemis supports low-
latency connection setup while performing optimal server
selection based on customizable policies.

2.2 Anycast-Based Solutions

Anycast addressing is a process of one-to-many association
where packets are routed to the end-host within a group
identified with the same IP address. It utilizes the Border
Gateway Protocol (BGP [19]), the de-facto standard inter-
domain routing protocol on the Internet, to select the short-
est routes to reach a destination. In most cases, the selected
end-host is close to the client, whereas in some cases, the
destinations are located far away, e.g., thousands of kilo-
meters [20], from the client.

Anycast-based server selection has been used by DNS
servers [21], [22] and CDNs including Microsoft Azure [23],
Edgecast [24], CloudFlare [6], and Google Cloud [13], [25].
Replicas are assigned with the same anycast address, mean-
ing that the replica selection is up to the anycast routing pol-
icy in use. Cloudflare, for example, implements its replica
selection purely on anycast, where a client connects to a rep-
lica server directly with an anycast address. Such server
selection method is straightforward but does not support
customized selection criteria, e.g., server load. Moreover, in
rare cases [26], a connection may be interrupted because
anycast does not guarantee the server affinity, i.e., the cli-
ent’s packet may arrive at a different replica server that it
communicated with previously.

FastRoute [8] is proposed as a load-aware anycast rout-
ing platform. It deploys DNS servers co-located with replica
servers for name lookup and traffic redirection. The servers
are deployed following a tree structure consisting of several
layers. When the nodes at the lower layers (starting from
leaf nodes) become heavily loaded, they redirect new
incoming connections to the nodes at the higher layers. In
this way, FastRoute is load-aware and guarantees server
affinity. But it delays the connection setup process because
of the use of DNS.

Artemis achieves fast service discovery via anycast rout-
ing. Compared with legacy anycast routing, Artemis sup-
ports customized replica selection criteria via overlay
routing and solves the problem of server affinity via late
binding. Because both overlay routing and late binding are
integrated into the connection setup process, Artemis does
not introduce additional latency compared with legacy any-
cast routing.

2.3 Application Layer Solutions

Application layer solutions usually reselect servers after the
client has connected to one of them [27], [28], [29]. For exam-
ple, HTTP status code 3xx for redirection is commonly used
in web services [27], [28]. Some others use custom protocols
for redirection in the application layer [29]. The application
layer solutions take into account the status of the clients,
e.g., locations. However, due to the additional latency
caused by redirection, it is not necessarily ideal for latency-
sensitive Internet applications.

2.4 Overlay Networks

Overlay is a classic and powerful technique of forwarding
packets with custom policies and is commonly used for
optimizing packet routing. For example, BDS [30] utilizes
an inter-datacenter overlay to accelerate the speed of data
duplication. In video transmission, overlay is used to reduce
the transmission delay by optimizing the routing path [31],
[32]. Although these applications have shown overlay’s effi-
ciency in optimizing the quality of service (QoS) in various
scenarios, its overhead is not negligible. First, the overlay
routing is usually implemented in the software. The packet
transmission inside an overlay node involves several traver-
ses through the network stack, which imposes overhead in
terms of both throughput and latency [33]. Second, the
packet loss ratio in overlay networks is larger than in the
physical networks because of the unreliability in the overlay
nodes, which challenges the QoS of the applications run-
ning on top of it [34].

In Artemis, we utilize an overlay to support customizable
routing policies. Meanwhile, we try to avoid the overlay’s
side effects. To minimize the additional delay caused by the

TABLE 1
Comparison of Related Works on Server Selection

Approach Methodology Server Load Awareness Connection Setup Latency Server Selection Result

FastRoute [8] Anycast & DNS Yes High, with DNS latency Suboptimal
Google load balancing [13] Anycast No Low Suboptimal
Akamai [14] DNS Yes High, with DNS latency Optimal
Artemis (this paper) Anycast Yes Low Optimal

4876 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

overlay, we reduce the number of packets going through it,
i.e., only the first packet in a connection is routed through
the overlay. To prevent packet loss, we introduce redun-
dancy routing that duplicates packets to achieve higher reli-
ability. Moreover, as discussed in Section 6.2, the use of
overlay in Artemis successfully addresses many challenges
in anycast routing.

3 DESIGN

In this section, we give an overview of Artemis in Section 3.1
and describe each module in detail from Sections 3.2, 3.3,
3.4, and 3.5.

3.1 Overview

The architecture of Artemis is shown in Fig. 2. We introduce
an overlay network between the clients and the servers for
redirecting clients’ handshake requests. The overlay net-
work is composed of several software routers, called Service
Dispatchers. They are deployed at different data centers and
are interconnected via inter-datacenter tunnels for packet
forwarding. All of the Service Dispatchers advocate the
same anycast network prefix via BGP announcements so
that a client’s packet may reach any data center via anycast
routing. In each data center, the replica servers are assigned
IP addresses within the IP subnet advocated by the Service
Dispatcher. We use a hash-based method to ensure that dif-
ferent replicas for the same Artemis name have the same
anycast IP address, which is known as a Service Address.

The connection setup process in Artemis is composed of
three steps. 1) ServiceID mapping. The client first calculates
the Service Address according to the Artemis name and
sends a handshake request to the calculated address. 2)
End-user mapping and ServiceID routing. Upon the reques-
t’s arrival via anycast routing, the Service Dispatcher in
question selects one data center based on the customizable
criteria and forwards the request to the Service Dispatcher

in that data center. Ideally, the request should be forwarded
to the nearest data center with service replicas deployed.
Then, the Service Dispatcher forwards the request to the
replica server inside its data center. 3) Late binding. The
replica server processes the request and sends back a hand-
shake response with its unicast IP address embedded. After
receiving the handshake response, the client migrates the
connection with Service Address to that with the replica
server’s unicast IP address.

After the connection setup, the server’s unicast IP
address is cached at the client to accelerate future connec-
tions. In case the server is not suitable for the client any-
more, the server can invalidate the client-side cache by
refusing the client’s new connection.

3.2 ServiceID Mapping

The ServiceID mapping module resides in the clients and
the Address Managers. Address Managers are deployed
inside every data center and are responsible for allocating
Service Addresses to the replica servers. The ServiceID
mapping module takes Artemis name as input and gener-
ates Service Addresses as output. A generated Service
Address is composed of two parts: a service prefix and a
ServiceID.

The service prefix is the same as subnet ID in IP address
space and is advocated by BGP routers within all of the data
centers, making it an anycast subnet. If a client wants to use
Artemis, it needs to acquire the network prefix from the ser-
vice provider beforehand. The network prefix will be used
as a unique identity of an instance of Artemis. Anycast rout-
ing provides a simple but efficient solution to direct a client
to its nearest data center. Artemis takes advantage of this
feature as previous works described in Section 2.2.

ServiceID is designed for load balancing via static hash-
ing. It is generated by the Artemis name according to a pre-
defined hash function. Given an Artemis name, we generate
a SHA512 [35] hash of it and choose the first Nsid bits as the
ServiceID, where Nsid is the length of the ServiceID in bits.
The value of Nsid is flexible and can be determined by the
Artemis providers according to their requirements. Gener-
ally, the longer the ServiceID is, the more allocable addresses
there are. However, a larger address space also increases
acquisition and maintenance costs. A particular case is set-
ting Nsid to 0. The service address will be a fixed IP address,
assigned to the only Service Dispatcher deployed at each
data center.

With the design of Service Address, we manage to
achieve three goals. First, the destination IP address is
derived from the Artemis name without any network-based
queries (e.g., DNS query), which is the primary reason why
Artemis achieves lower name resolution latency than DNS.
Second, the Service Dispatcher with the calculated service
address is highly likely to be located in a nearby data center,
following the principle of geolocation-based anycast rout-
ing. Third, the ingress traffic is distributed among all Ser-
vice Addresses, meaning that we can increase Nsid to raise
the number of Service Dispatchers and therefore reduce the
load of each Service Dispatcher.

DNS Name Space. Although Artemis technically supports
any lexical phrase on name resolution, it is challenging to

Fig. 2. Artemis architecture within a data center. A client connects to a
Service Dispatcher through the Service Address. The Service Dis-
patcher forwards the handshake request to the optimal replica server.
The replica server migrates its IP address from the Service Address to
its unicast IP address (the server address in the diagram) for connection.

LI ETAL.: ARTEMIS: A LATENCY-ORIENTED NAMING AND ROUTING SYSTEM 4877

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

keep the DNS name space because the latter strictly forces
third-party services to synchronize their name records with
the DNS root servers [36], [37]. The synchronization delays
Artemis in name resolution and requires additional stan-
dardizationwork. So, we left the support of DNS name space
in Artemis as future work and focused on a technical solu-
tion that translates lexical server names into IP addresses.

3.3 End-User Mapping

The end-user mapping module is a distributed algorithm
running on each Service Dispatcher to implement the rep-
lica selection criteria. We aim to find a replica server with
the lowest latency to the client in question since low latency
is a common requirement of Internet services [14]. Note that
Artemis can support other customized policies as well.

From the handshake request, we get the information on
where the request comes from (the client’s source address)
and what service the client is requesting (the Artemis
name).1

We use a database to provide data storage of high scal-
ability and reliability. The database contains two tables
named ServiceDeployment and LatencyMeasurement. Suppose
there exists at least one replica server in a data center. In
that case, a record indicating the Artemis name associated
with the replica server and the data center identity is added
to the ServiceDeployment table in the format of (Artemis
name, data center). The LatencyMeasurement table records
the RTT between every pair of data center and client subnet,
which is measured by active probing periodically. A record
(subnet, data center, RTT) is updated in the LatencyMeasure-
ment table when one round of measurement completes.2

The database is deployed in the primary-secondary mode to
provide high accessibility. The primary node is statically
configured in one of the Service Dispatchers, and the sec-
ondary node runs on all of the other Service Dispatchers. To
ensure the efficiency of data synchronization, we allow the
write operation on the primary node only.

The replica server selection procedure is as follows. First,
given a client subnet and a target Artemis name, the Service
Dispatcher queries the ServiceDeployment table to find out
the data centers where replica servers with the given Arte-
mis name exist. Then, based on the previous result set, it

queries the LatencyMeasurement table to find out the nearest
data center to the client. Finally, different types of packet
routing are applied based on the query results.

3.4 ServiceID Routing

The ServiceID routing module is designed to forward the
packets to the optimal replica server for each client. It com-
prises two parts, i.e., the inter-DC routing (Section 3.4.2),
which directs packets to the optimal data center, and the
intra-DC routing (Section 3.4.1), which directs packets to a
proper server within the selected data center. Furthermore,
we use redundancy routing (Section 3.4.3) to reduce the tail
latency in Artemis, caused by the dynamics as well as the
unreliability of the Internet routing. The packet path is
shown in Fig. 3.

3.4.1 Inter-DC Routing

At first, the client sends a handshake request to the Service
Address (step 1 in Fig. 3). Every data center has its own Ser-
vice Dispatchers to handle the Service Addresses and the
request may reach a Service Dispatcher inside any data cen-
ter. The inter-DC routing infrastructure is designed to route
the handshake request from where it is received, DCanycast,
to the optimal data center, DCoptimal, which is determined
by the end-user mapping module.

On receiving the handshake request, the Service Dis-
patcher extracts the Artemis name from the request and
uses the end-user mapping module to find DCoptimal. If
DCoptimal refers to a different data center, the handshake
request is forwarded through the network tunnels to
DCoptimal (step 2 in Fig. 3). After reaching DCoptimal, intra-
DC routing is conducted to forward the request further to a
replica server.

3.4.2 Intra-DC Routing

The next step is to dispatch the handshake request from the
Service Dispatcher to the corresponding replica server
within the data center. A database table called ReplicaDe-
ployment is created to record the information of all replica
servers. Unlike the tables in Section 3.3, ReplicaDeployment is
stored locally without synchronization in the Service Dis-
patchers because the data is used only inside the data cen-
ter. Whenever a new server is registered to a domain, a new
entry (domain, tunnel name) will be inserted into the table.
The entry will be deleted when the server stops serving the
domain.

Upon receiving the handshake request, the Service Dis-
patcher queries the ReplicaDeployment table and selects a
replica server for the domain. We perform random selection
among server replications to evenly distribute the requests

Fig. 3. Packet paths of handshake flow and data flow in Artemis. The table on the right shows various packet headers. Symbols in block letters repre-
sent different roles in Artemis. CL is the client, SD is the Service Dispatcher, and SV is the server. SA stands for Service Address and is the IP
address of the Service Dispatcher. CL.IP is the IP address of the client. It may be the router’s IP address if the client is behind a NAT. SV.IP is the uni-
cast IP address of the server. The network tunnels transfer packets between two hosts bidirectionally.

1. QUIC enforces the handshake request to contain the server’s
name, as the value of an extension in TLS 1.3 called server name indica-
tion (SNI) [38]

2. The active measurement method is designed for IPv4 and does
not work for IPv6 because of the latter’s large address space. Consider-
ing that IPv4 is still dominating the Internet traffic [39], we are targeting
IPv4, and the support of IPv6 is left for future work. To support IPv6,
we may use passive measurement to restrict the measurement scope to
active clients instead of the whole Internet [40].

4878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

among them. Then, the Service Dispatcher forwards the
handshake request to the selected replica server through a
network tunnel (step 3 in Fig. 3). Afterward, the replica
server receives the original handshake request from the cli-
ent. After processing, the replica server generates a hand-
shake response and sends it back to the client. To avoid
being blocked by the client’s firewalls, the response packet
is delivered back to the client through the original route
(steps 4 and 5 in Fig. 3). From the client’s view, it has estab-
lished a connection with the Service Dispatcher, which is a
proxy for the replica server. Then, the connection is
migrated to the server’s unicast IP address with the help of
the late binding module. Finally, the client and the server
can communicate directly with unicast IP addresses (steps 6
and 7 in Fig. 3).

To put it all together, the routing table of the Service Dis-
patcher is shown in Table 2. TBbi means the network tunnels
towards the other Service Dispatchers, and TBsi means net-
work tunnels towards the replica servers. Nbu refers to the
port assigned with the Service Address in a Service Dis-
patcher. optimal check indicates whether DCanycast equals to
DCoptimal.

Artemis gains three advantages by the design of Serv-
iceID routing. First, the routing policy knows rich elements,
including the system state, the network performance, and
the application-level information. Second, all of the data
mentioned above are persisted in the database. The Service
Dispatchers are stateless and can recover from failures
quickly. Third, network tunnels enable us to complete the
routing by only modifying a small part of the replica serv-
ers’ network stacks. More details about the implementation
are given in Section 4.1.

3.4.3 Redundancy Routing

With the design of inter-DC routing and intra-DC routing,
Artemis can route a client’s packets to its optimal replica
server. In this paper, the optimal rule is defined as choosing
the one which would not be overloaded and would provide
the lowest end-to-end latency. However, there are cases
where inter-DC routing fails to choose the replica server of
the lowest end-to-end latency. First, the result of end-user
mapping may be outdated. Although the state-of-the-art
network measurement tools can scan the Internet within 5
minutes [41], it is not practical to update the Inter-DC rout-
ing tables at such high frequency due to the overhead of
synchronizing a massive amount of entries within a globally
deployed cluster. We set the update frequency as once per
day in Artemis. Second, packet loss is unavoidable on the
Internet and has been found as a significant cause of tail

latency in DNS [42]. In Artemis, a lost handshake packet
would significantly delay the handshake process due to the
time spent on waiting for retransmission. With the help of
redundancy routing, the lost packet affects only one replica
server, and nearby servers receiving the request can still
establish a connection with the client without waiting for
retransmission. Third, an overloaded replica server may fail
to handle a client’s handshake request. Nearby servers can
replace the malfunctioning one by actively responding to
the client’s handshake request.

At the stage of inter-DC routing, instead of only for-
warding the client’s handshake request to the optimal data
center, we duplicate the handshake request and forward
them to the top X data centers, where X is a configurable
variable starting from 1. With redundancy routing, X rep-
lica servers are receiving and responding to the client’s
handshake request. The client accepts the first received
handshake response and discards the handshake response
from the other replica servers.

Overhead of the Redundant Packets. The most significant
side effect of duplicating packets on the Internet is the
increase in data traffic, thus causing additional workload to
all participants of the packet transmission system. We care-
fully design the redundancy routing to mitigate the side
effect of duplicating packets. First, we only duplicate hand-
shake packets, which make up a minority of the Internet
packets. So, the newly introduced traffic is much smaller
than the existing traffic handled by the Internet infrastruc-
ture. Second, the duplicated packets cause more traffic to
the intra-DC routing than to the inter-DC routing. It is com-
paratively easy to be handled by the Artemis infrastructure
because the intra-DC routing only deals with regional pack-
ets. Third, owing to QUIC’s security design, the replica
servers can avoid wasting resources in handling the half-
open connections caused by the duplicated handshake
packets, which is an important security feature of handling
dynamic denial of service (DDoS) attacks [43]. Finally, Arte-
mis is flexible at dealing with the side effect of the redun-
dant packets by setting a proper value ofX.

3.5 Late Binding

The late binding module is to bind a client with the selected
replica server. When initiating a connection, the client sends a
handshake request to the Service Address, and the handshake
request reaches a replica server through the ServiceID rout-
ing. After processing the handshake request, the server gener-
ates a response and sends it back to the client. The one round
trip of handshake packets finishes the handshake process,
along with the service discovery process. To reduce the Ser-
vice Dispatcher’s load, all of the following packets are deliv-
ered directly between the client and server without going
through the overlay network. So, we design the late binding
module to enable a server to migrate the connection from Ser-
viceAddress to its unicast IP address.

QUIC already supports the connection migration on
completion of the handshake, called the server’s preferred
address [11]. The server can accept connections on one IP
address and transmit data from a more preferred IP address
shortly after the handshake. The mechanism is described
below.

TABLE 2
The Routing Table of a Service Dispatcher

Condition Action

in_port optimal_check output

Nbu true TBsi

Nbu false TBbi

TBsi / Nbu

TBbi / TBsi

LI ETAL.: ARTEMIS: A LATENCY-ORIENTED NAMING AND ROUTING SYSTEM 4879

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

Both the handshake request and the handshake response
can carry transport parameters. The transport parameters
are defined as key-value pairs. The key is of integer format
and the value is of binary format with flexible length. The
server embeds its preferred address inside the handshake
response with the key of preferred_address (0x000d). The cli-
ent extracts the preferred address and sends further packets
to the server’s new address immediately. The late binding is
fast because it is integrated into the handshake process and
does not cause extra latency. Since QUIC has native support
in mobility, changing the server’s IP address does not com-
plicate either the server’s or the client’s state machine.

Besides, we use a cache mechanism of the server’s pre-
ferred address on the client side. A key named service_ttl
(0xff00) is registered as a new transport parameter. The
value is in the integer format, representing how many sec-
onds the server’s preferred address should be cached on the
client side. As long as the time to live (TTL) is not expired,
the client is allowed to make new connections to the service
replica via the replica’s unicast IP address directly. Other-
wise, the client must query for the optimal server again by
using the Service Address.

4 IMPLEMENTATION

Our implementation is based on the cloud infrastructure
where replica servers are deployed at several geo-distrib-
uted data centers to serve global clients. At each data center,
there are one or more Service Dispatchers, which are soft-
ware routers with support of overlay routing, and a group
of servers that work for their dedicated names. The follow-
ing of this section is organized as below. Section 4.1 presents
the implementation of overlay routing, and Section 4.2
presents the modification of QUIC, including both server-
side and client-side changes. In Section 4.3, we demonstrate
the deployment of Artemis on Google Cloud as a cloud-
based evaluation platform. The source code is available at
https://github.com/johnson-li/Artemis.

4.1 Tunnels and Packet Forwarding

Generic Routing Encapsulation (GRE) is a protocol for
encapsulating data packets of one routing protocol inside
packets of another protocol. Artemis utilizes Layer-3 GRE
tunnels to transfer IP packets between service dispatcher
and replica server or between service dispatchers. In prac-
tice, Open vSwitch (OVS) [44] is used for tunnel establish-
ment and packet forwarding.

Fig. 4 illustrates an example scenario of Artemis deploy-
ment across two data centers. A Service Dispatcher is
equipped with two physical NICs, namely Nba and Nbu. Nba

is assigned with one or more anycast IP addresses (Service-
IDs) for the anycast routing. Nbu is assigned with a unicast
IP address for establishing GRE tunnels. The server is
equipped with only one physical NIC, namely Nsu. It is
assigned with a unicast IP address to establish GRE tunnels
and perform data transmissions. Note that the Service Dis-
patcher does not need multiple NICs because multi-hom-
ing, where multiple IP addresses are assigned to the same
NIC, can provide the same functionality. We choose multi-
ple NICs in implementation because our evaluation plat-
form, i.e., Google Cloud, does not support multi-homing.

GRE tunnels and virtual interfaces are created on the Ser-
vice Dispatchers and the replica servers. A Service Dis-
patcher establishes GRE tunnels to the Service Dispatchers
in other data centers, namely TLbi for the ith data center,
and the replica servers in the same data center, namely TLsi

for the ith replica server. On each service dispatcher and
replica server, a virtual interface is created for each GRE
tunnel to provide the reading and writing access to the
applications (i.e., QUIC servers). The OVS is configured to
forward all packets from virtual interfaces to the paired
endpoint through GRE tunnels. On the servers, TSbi is the
corresponding endpoint of TLsi. It connects the Service Dis-
patcher (denoted as bi) and is configured with the same IP
address as ServiceID, which is also the IP address ofNba.

The Service Dispatcher does not generate any extra pack-
ets. It simply routes received packets to their proper desti-
nations. The routing policy is implemented in two parts.
For the ingress packets arriving from Nba and TBbi, we
implement a module to parse and route QUIC handshake
packets as follows. First, it creates a raw socket for each
interface, including physical NICs and virtual interfaces.
The sockets are bound to the interfaces via the socket option
SO_BINDTODEVICE. Second, it uses the created sockets to
receive IP packets from the NICs and parses the QUIC
handshake packets. According to the routing policies
described in Section 3.4, the packets are forwarded to spe-
cific destinations directly by writing to the corresponding
socket. The socket option IP_HDRINCL is set to prevent the
system from filling in the IP headers. For the ingress packets
arriving from TBsi, we create data flows in OVS to send out
all packets received from the servers (with in_port equal to
TBsi) to the Internet viaNba. Since TSbi is already configured
with the ServiceID, which is of the same address as Nba, the
Service Dispatcher does not need to change any fields of
the IP packets. In this way, the packets manage to bypass
the source address check.

4.2 Modifications on the Network Stack

As mentioned in Section 3.5, we implement the “preferred
address” feature of QUIC and the ServiceID mapping mod-
ule on both the client-side and the server-side.

Fig. 4. An example scenario of Artemis deployment across two data cen-
ters. All of the servers serve the same domain. DC stands for data cen-
ter, and SD stands for Service Dispatcher. Solid lines represent physical
NICs, dashed lines represent virtual interfaces, and lines with arrows
represent GRE tunnels.

4880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

https://github.com/johnson-li/Artemis

On the client-side, we add a new system call named
getaddrinfosid, which takes the Artemis name as input and
outputs Service Address, as an alternative to the system
call named getaddrinfo, which is for DNS query. To use
Artemis, the client application needs to change the DNS-
based application code from invoking getaddrinfo to invok-
ing getaddrinfosid, which may require recompilation or
patch on the existing application. The code change is lim-
ited to the function name as both system calls have the
same input and output format. We do not simply replace
the implementation of getaddrinfo because the other appli-
cations that do not support Artemis should be able to use
DNS for name resolution.

On the server-side, we modify the QUIC server to make
it work on multiple interfaces with finer-grained control
over the routing. The legacy QUIC server creates only one
socket and listens on the UDP port 443. Upon receiving a
packet, it extracts the packet source address and sets it as
the IP address of the remote peer. This mechanism works
on multiple interfaces by leaving the choice of the outgoing
interface to the system routing table. We create a socket for
each interface, including the physical NIC (Nsu) and the
GRE tunnels (TSbi). The socket and the interface are bound
with the socket option SO_BINDTODEVICE. Upon receiv-
ing a packet, the QUIC server records which socket it reads
from and performs write operations on the same socket.
Therefore, the responses can follow the same path back to
the client. The late binding module utilizes these features by
changing the socket from TSbi to Nsu when the client
changes the remote peer from the Service Address to the
server’s IP address.

We find that almost all IETF QUIC implementations have
supported the transport parameter preferred_address. How-
ever, none of them have implemented the logic of migrating
the connection.3 To the best of our knowledge, we are the
first to implement this functionality. Our modification to
the QUIC client and the QUIC server is based on ngtcp2.4

4.3 Deployment of the Emulation Platform

We deploy the emulation platform as shown in Fig. 5, which
is composed of application clients running over 15 AWS

zones and application servers, as well as the Artemis infra-
structure, running over 11 Google Cloud zones. Each AWS
zone hosts a client machine running Ubuntu 18.04 LTS over
1 vCPU and 1 GB memory. Inside each Google Cloud zone,
we deploy two machines, router and server, separately. Both
run Ubuntu 18.04 LTS over 1 vCPU and 3.75 GB memory.
The server works as an application server, and the router
works as a Service Dispatcher. Ideally, the router is an SDN
router integrated with the cloud routing infrastructure.
However, it is impossible to modify routers in commercial
clouds. So, we set up VxLAN5 tunnels between the router
and the server as described in Section 4.1 to simulate the
router as a gateway to the server.

The other obstacle we face with Google Cloud is the
lack of anycast address. Google Cloud can only assign uni-
cast IP addresses to the VMs, whereas anycast addresses
are required in the design of overlay routing. To solve this
problem, we use Google’s cloud load balancing6 to simu-
late anycast routing. Google Cloud uses a single anycast IP
as the frontend of all backend instances in the regions
around the world. We assume that the affiliated frontend
and backend are hosted at the same geolocation, meaning
that the anycast IP address assigned to the frontend is logi-
cally equivalent to being associated with the backend
server. We set up web servers in all regions as replicas and
expose them with a single anycast IP address provided by
the load balancing frontend. The web server is configured
to return its region name on HTTP requests. In this way,
the client can find out to which data center its request is
forwarded via anycast routing. We call this procedure any-
cast probing.

With the implementation, the dataflow of a client-initi-
ated connection is shown below.

1) A client uses anycast probing to find the data center
routed by anycast addressing.

2) The client sends a handshake request to the router’s
IP address inside the found data center.

3) The router forwards the handshake request to a
server, and the server completes the handshake pro-
cess by returning a handshake response, inside
which the server’s IP address is embedded.

4) After the handshake procedure of Artemis, the client
replaces the remote peer’s IP address with the serv-
er’s IP address.

5 EVALUATION

We evaluate the performance of Artemis in three steps.
First, we conduct microbenchmarking to assess the scal-
ability of Artemis. Second, we compare Artemis with the
state-of-the-art via simulation, which is built on real-
world measurements of DNS latency and anycast
latency. Third, we deploy Artemis on Google Cloud and
analyze the performance impact of the geo-distribution
of servers.

Fig. 5. Setup of the emulation platform. AWS is used to host the applica-
tion clients. Google Cloud is used to host the Artemis infrastructure and
the application servers. The load balancing frontend from Google Cloud
is used to provide anycast IP addresses.

3. We have checked ngtcp2, Minq, mozquiz, picoquic, and quicly.
4. https://github.com/ngtcp2/ngtcp2

5. Google Cloud does not allow GRE tunnels, so we use Virtual
Extensible LAN (VxLAN) for tunneling instead. Because we do not use
any layer 2 feature provided by VxLAN, GRE and VxLAN are inter-
changeable in our deployment.

6. https://cloud.google.com/load-balancing

LI ETAL.: ARTEMIS: A LATENCY-ORIENTED NAMING AND ROUTING SYSTEM 4881

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

5.1 Microbenchmarking

Experiment Setup. We create an emulated network environ-
ment following the topology illustrated in Fig. 6. Each host,
whether a client, a server, or a Service Dispatcher, is equipped
with a quad-core 3.40 GHz Intel Xeon CPU and 16 GB mem-
ory, running Ubuntu 16.04 LTS (64-bit). All of the hosts are
wired connected in a 1 Gbps local area network (LAN). The
RTT between each pair of connected hosts is measured to be
smaller than 1ms. Such a setup guarantees that the network
would not become the bottleneck in the experiment.

Test Cases and Metrics. We design the following two sets
of test cases to compare the performance with and without
using Artemis and analyze the overhead of Artemis based
on the comparisons.

� Direct Connection: The client establishes a QUIC con-
nection with a server directly based on the server’s
IP address.

� Connection over Artemis: The client makes QUIC con-
nections over Artemis.

We vary the number of concurrent connections and com-
pare the latencies and hardware usages for both test cases.
The measurement metrics are listed below.

� Handshake latency: the time spent between sending a
handshake request and receiving a handshake
response. It occurs once during the life cycle of a
connection.

� Connection setup latency: handshake latency plus DNS
query latency when DNS is in use. Otherwise, it is
equal to handshake latency.

� Transmission latency: the RTT between a client and a
server. It is the most important latency metric
because it affects the transmission delay of all pack-
ets in a connection.

� Query latency: connection setup latency plus the time
spent between sending a QUIC request and receiv-
ing a QUIC response, i.e., the overall latency of a
short-lived connection. It is another important
latency metric because connections with few packets
were reported to make up about 48% of the network
flows in a study on the campus network [45].

� Hardware usages: CPU usage and memory usage on
each host.

There are two different scenarios in the case of Artemis,
depending on whether the replica selected through anycast
routing happens to be the optimal one according to the
selection criteria. If it is the case, the client’s handshake
request only goes through a service dispatcher once. If not,
the request would be redirected inside the overlay network,
meaning that it must go through two service dispatchers.
Based on the measurement result in Section 5.2, in 82.3% of
the cases, the requests just need to go through one service
dispatcher.

Experiment Result. As shown in Fig. 8, when the client
connects directly with the server, the handshake latency,
query latency, and memory usage increase linearly with the
number of concurrent connections. The CPU usage reaches
30% when there are 1,000 concurrent connections.

For comparison, as shown in Fig. 9, the handshake latency
and the query latency increase by 20.9ms and 27.3ms, respec-
tively, when the packets need to go through service dispatch-
ers. Our implementation is in user space. It receives packets
from the kernel space, parses packets in the user space, and
delivers packets back to the kernel space. This process can be
accelerated if the program runs in kernel space, which is left
for future work. Unlike the clients and the servers, the mem-
ory usage of the Service Dispatchers keeps steady when the
number of concurrent connections increases. It is because Ser-
vice Dispatchers are stateless. They do not need to maintain
state machines for ongoing connections. The CPU usages of
both clients and servers are almost the same in both cases. It
validates that Artemis does not harm either the client’s or the
server’s performance.

Scalability. According to the microbenchmarking result,
we conclude that Service Dispatcher will not be the bottle-
neck of the system because of the following three reasons:

� The stateless design of Service Dispatchers. Because
of late binding, all of the packets after the handshake
are transmitted between clients and servers directly.
So, there is no need for a Service Dispatcher to main-
tain connection states, making it easy to handle a
large number of concurrent connections.

Fig. 8. Performance over different numbers of concurrent connections when the client connects to the server directly.

Fig. 7. Processes of connection establishment with and without Artemis.
Each case contains a four-way communication.

Fig. 6. Network topology and network parameters used for benchmark-
ing: client (C), server (S), and Service Dispatcher (SD).

4882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

� The use of anycast. Artemis exposes Service Dis-
patchers via anycast IP addresses, which has been
demonstrated as easy-to-use and efficient for load
balancing, i.e., evenly distributing geo-distributed
clients to nearby replica servers.

� Client-side cache. Like DNS, Artemis caches the
name resolution result on the client to prevent
repeated name lookup within a predefined TTL. It
reduces the load of Service Dispatchers.

5.2 Simulation

In this subsection, we reuse the network topology shown in
Section 5.1 but configure the RTTs among each host based
on real-world measurement of end-to-end latencies from
the Internet. Section 5.2.1 presents our method for measur-
ing end-to-end latency on the Internet, and Section 5.2.2
shows our approach to simulating different test cases via
the collected latency data and the evaluation results.

5.2.1 Real-World Latency Measurement

DNS Latency. RIPE Atlas [46] is a global Internet measure-
ment platform consisting of thousands of measurement
devices. We use 500 RIPE Atlas probes as DNS clients to
make DNS requests and measure the response delay. The
authoritative name servers of the DNS names in query are
hosted by Route537 as type A records, and the TTL of the
records is set to 60 minutes. The DNS names queried from
different DNS clients are within the same domain zone but
have other subdomains, so that the DNS server can distin-
guish the clients from their queries. During the measure-
ment, each client sends three consecutive DNS queries. The
first query is for bootstrap and is of a different DNS name
from the later two, which are of the same DNS name. The
second query will encounter a cache miss because the DNS
name has never been queried before. The third query will
encounter a cache hit if and only if there is only one DNS
query record from a client on the authoritative name server.
In this way, we measure latencyhit and latencymiss as the
DNS query latency on cache hit and cache miss, respec-
tively. Notice that DNS cache miss may occur at different
levels in the DNS hierarchy. For example, a miss in the
name server (NS) record results in a recursive query to the
top level domain (TLD) name server and to the authoritative
name server. On the contrary, a miss in the A record
requires only one query to the authoritative name server.
The cache miss encountered in the measurement is the later
case. Therefore, latencymiss is the lower bound of the actual
DNS query on cache miss.

The result, illustrated in Fig. 10, shows a long-tail pattern
in both cases. When cache hit occurs, the query latency is
smaller than 2ms in 58.2% of the cases. But there are also
2.8% of the cases where the latency is longer than 50ms. In
the case of cache miss, the latency grows, and the tail
expands further since the DNS resolver needs to query the
authoritative name server. The result shows that 20.4% of
the queries experience latency over 200ms, which severely
delays the connection setup latency.

Anycast Routing. Cloudflare is a leading CDN service pro-
vider that is built on anycast. It provides service via 152 data
centers around the world. Its public DNS servers are
exposed via an anycast IP address 1.1.1.1 and are hosted
globally. We use 500 RIPE Atlas probes as vantage points
(VPs) to make DNS requests to public DNS servers. The
requested domain is hosted on an authoritative name server
owned by ourselves. The public DNS servers act as resolv-
ers and forward the query to our authoritative name server
for DNS resolution, with their unicast IP addresses as the
source address in the IP header. In this way, the unicast
address of the DNS resolver is discovered.

With the unicast IP address of each anycast DNS
resolver, it is possible to check if the anycast routing directs
a VP to the DNS resolver with the minimal RTT. We use
RIPE’s ping utility to measure the RTT between each VP
and DNS resolver. latencyanycast is the measured RTT from a
VP to an anycast DNS resolver’s unicast representative, and
latencymin is the minimal RTT from a VP to all of the DNS
resolvers. Among the results, 82.3% of the VPs have wit-
nessed that latencyanycast equals latencymin. It indicates that
anycast routing already provides good performance in most
cases. For the remaining VPs where the anycast routing
does not lead to the optimal replica, we show the distribu-
tion of the RTTs in Fig. 11. Analyzing the additional latency
latencyextra ¼ latencyanycast � latencymin, we find that in
31.6% of the cases, latencyextra is smaller than 2ms, and in
15.8% of the cases, latencyextra is larger than 20ms. On aver-
age, anycast routing causes an additional latency of 12.71ms
compared with the scenario where the client is connected to
the nearest DNS resolver.

Fig. 9. Performance over different numbers of concurrent connections when the client connects to the server via Artemis.

Fig. 10. DNS query latency in cache hit and cache miss cases.7. https://aws.amazon.com/route53/

LI ETAL.: ARTEMIS: A LATENCY-ORIENTED NAMING AND ROUTING SYSTEM 4883

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

Cloudflare deploys its frontend and backend DNS resolv-
ers at the same data center [47]. Therefore, it is reasonable to
abstract the complexity of frontend and backend DNS resolv-
ers as a single entity at the scale of data centers. Our anycast
routing measurement method works based on this assump-
tion. It is more reliable than existing CHAOS-record-based
solutions because the CHAOS record may cause ambigui-
ties [48]. However, this method may not work on the DNS
deployments where the frontend DNS resolvers and the
invoked backend resolvers reside in different data centers. In
this case, a latency-based solution [49], which considers the
constraint caused by the speed of light, is a better solution.

5.2.2 Test Cases

We simulate empirical end-to-end network latencies accord-
ing to the patterns shown in previous latency measure-
ments. We consider the scenario where replica servers are
deployed in all available data centers. Three test cases are
created to represent service discovery over DNS, anycast,
and Artemis, respectively. The setup of the simulation is
described in Table 3.

� DNS. The direct connection shown in Fig. 7 is used.
The link delay between the client and the server is
simulated based on the connection delay in optimal
routing, as shown in Fig. 11. The DNS query delay is
simulated based on the measurement result shown
in Fig. 10. According to [50], we set the DNS cache
hit ratio to 83.5% in the simulation.

� Anycast. The direct connection shown in Fig. 7 is
used. The link delay between the client and the
server is simulated based on the connection delay in
anycast routing, as shown in Fig. 11.

� Artemis. The connection over Artemis shown in Fig. 7
is used. The link delay between the client and the
server is negligible because they are inside the same
data center. The link delay between two Service Dis-
patchers is calculated based on the geographical dis-
tance: latencyoverlay ¼ 2:3�distance

c . c is the speed of
light, and 2.3 is the median factor that network
latency is compared with the speed of light [51]. The
probability of the two scenarios in Artemis is the
same as the probability that anycast routing happens
to select the replica server of the lowest latency, i.e.,
82.3% for connection over Artemis (1) and 17.7% for
connection over Artemis (2) in Fig. 7.

Connection Setup Latency. As shown in Fig. 12, the mean
value of the connection setup latency in DNS is 27.32ms. In
Artemis, this process takes 17.25ms on average. So, Artemis
reduces the connection setup latency by 36.8% compared
with DNS. The reduction in latency is mainly contributed

by eliminating of dedicated name resolution packets. The
ServiceID is calculated locally on the client-side, and the ini-
tial packet is generated based on the target DNS name
immediately. On the contrary, DNS requires a network-
based query before connecting to the server, which takes
time. The only factor that may delay Artemis is the routing
of anycast.

How Does Anycast Routing Affect Artemis? In rare cases,
anycast routing may direct the client’s initial packet to a dis-
tant replica server and make the connection setup latency as
high as 200ms. Most anycast-based systems suffer from this
problem [23], [26]. In Artemis, our solution to this problem
is sacrificing a little bit in the handshake latency but ensur-
ing that a client always selects the nearest replica server. It
is a worthy trade-off because handshake latency occurs
only once, but a client can always benefit from the reduction
in RTT during the lifetime of a connection. According to the
simulation result, Artemis reduces 2.46ms in RTT compared
with legacy anycast routing by reselecting a closer server
replica. The side effect is the increment of 0.39ms in the con-
nection setup latency, which is much smaller than the
reduction in RTT. Some solutions have been proposed to
improve anycast routing. For example, [52] adds geographic
hints to BGP advertisements and obtains encouraging
results. Artemis can benefit from them.

Query Latency.The query latency is composed of the con-
nection setup latency and one RTT between the client and
the replica server. Since both DNS and Artemis find the
optimal replica server for a client, the RTT is the same for
both. Anycast obtains a longer RTT because anycast routing
does not always find the nearest replica server. According
to the simulation result, the client completes the query
within 41.72ms, 33.72ms, and 31.65ms for DNS, anycast,
and Artemis, respectively. Artemis achieves the lowest
latency by performing name resolution at the same time of,
instead of before, establishing transport layer connection
and making up the routing issue in anycast. Compared
with anycast, Artemis is load-aware, and the query latency

Fig. 11. End-to-end latency by anycast routing and the optimal routing.

TABLE 3
Network Parameters of the Simulation Setup

System Data path Delay configuration Ratio

DNS C ! DNS cache hit in Fig. 10 83.5%
cache miss in Fig. 10 16.5%

C ! S1 optimal routing in Fig. 11 100%
Anycast C ! S1 anycast routing in Fig. 11 100%

Artemis C ! SD1 anycast routing in Fig. 11 100%
SD1 ! S2 ignored 82.3%

SD1 ! SD2 ! S3 estimated by distance 17.7%
C ! S2=S3 optimal routing in Fig. 11 100%

Fig. 12. Comparison of latency with DNS, Artemis, and anycast.

4884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

is 6.1% lower. Compared with DNS, Artemis reduces the
query latency by 24.13%.

5.3 Real-World Deployment

In this section, we go beyond simulation and deploy Arte-
mis on the real Internet to further evaluate its performance.

Experiment Setup.We deploy Artemis infrastructure on
Google Cloud as described in Section 4.3. The clients are
deployed within 15 AWS regions across 5 continents.8 The
latency from each data center to each client region is mea-
sured beforehand. It takes 11 � 15 = 165 rows in the Latency-
Measurement table to store the latency measurement.

Test Cases. As studied in [20], the performance of an any-
cast-based system is affected by the number and geo-location
of the replica servers. As shown in Table 4, we design four
test cases to evaluate how Artemis performs under different
deployment options. In the global large case, we deploy cli-
ents over 15 data centers and servers over 11 data centers.
The scale is not as large as global commercial deployment of
hundreds of data centers. We use the name “global large” to
distinguish it from other test cases of smaller scales. Besides,
as analyzed in the next paragraph, the experiment result
shows that such a deployment scale already exhibits a better
system performance than a small-scale deployment.

Experiment Result. Fig. 13 compares connection setup
latency and query latency in each test case. The results are
summarized in Table 5. Anycast routing’s impact on the
transmission latency is shown in Table 6. We divide the test
cases into 3 categories to further analyze the result.

� Global Large. In this case, anycast routing directs
most clients to their nearby servers. From Fig. 13, we
find that most clients have the same handshake
latency and transport latency between anycast and
DNS (excluding DNS query latency) except client 9.
The result aligns with the conclusion in [20] that 11
anycast nodes are sufficient to serve the world with
low latency. More anycast nodes do not contribute
much to reducing the latency. Regarding latency,
Artemis performs similarly to anycast because any-
cast is already optimal in this case. DNS has a much
higher delay in both connection setup latency and
query latency because of the additional DNS query
latency. We notice that Artemis is 2.3ms slower than
anycast in handshake latency. The additional delay
is mainly spent on MySQL query and packet for-
warding in the Service Dispatchers. Even with addi-
tional processing delays, benefiting from the fix of

routing problems in anycast, the query latency of
Artemis is only 0.2ms larger than anycast. Focusing
on client 9, it shows that Artemis spends additional
time on the handshake process to fix the routing
problem of anycast and finally achieves a query
latency lower than anycast.

� Global Small. In this case, anycast routing does not
perform as well as the global large case. The connec-
tion setup latency and the query latency of anycast
are much larger than DNS because anycast routing
directs most clients to distant servers. Artemis also
suffers from this issue when anycast routing per-
forms poorly, causing the handshake latency to be as
high as anycast. However, thanks to the overlay
routing of Artemis, the routing problem of anycast is
fixed after the handshake procedure, resulting in a
greatly reduced query latency. Compared with any-
cast, Artemis reduces the query latency by 38.2ms
with the side-effect of increasing the connection
setup latency by only 1.4ms.

� Regional. In this case, the performance of Artemis,
DNS, and anycast are close to each other because any-
cast routing directs most clients to a nearby server. The
performance of the DNS-based solution is slightly
worse than Artemis and anycast because of the addi-
tional latency introduced by the DNS query. Artemis
tends to havehigher handshake latency but lower trans-
mission latency than anycast because Artemis always
redirects clients to the server with the lowest end-to-
end latency, although the one chosen by anycast is only
a fewmilliseconds higher than the closest one. The ben-
efit of this behavior is the reduction of end-to-end
latency, which helps the client save a few milliseconds
on the transmission delay of all subsequent packets.

In summary, Artemis achieves low-latency naming and
routing over a global deployment scale. With the deployment
of 11 zones across 5 continents, Artemis reduces the connec-
tion setup latency and the query latency by ð38:3�
23:2Þ=38:3 ¼ 39:4% and ð56:5� 41:0Þ=56:5 ¼ 27:4%, respec-
tively, comparing with DNS. Artemis also suffers from the
high latency caused by anycast routing when anycast routing
performs badly. Still, Artemis can fix the routing problem and
redirect the client to its nearest replica server. With the
deployment of 5 zones across 5 continents, Artemis reduces
the query latency by 25.2% with the side-effect of increasing
the connection setup latency by 1.8%, comparedwith anycast.

5.3.1 Redundancy Routing

In this subsection, we analyze how Artemis performs under
different settings of redundancy parameters. We use the
experiment setup the same as the Global Large test case, i.e.,
replica servers are deployed in 11 regions across 5 continents.

Test Cases. We design four test cases and tune the dupli-
cation parameter X, which is defined in Section 3.4.3, from
1 to 4 in each test case. When X is set to 1, the Service Dis-
patcher only forwards the client’s requests to its optimal
data center based on the end-user mapping result. When X
is set to 4, the Service Dispatcher clones the client’s hand-
shake request into 4 copies, which are sent to the top 4 data
centers based on the end-user mapping result.

TABLE 4
Deployment Parameters of the Test Cases

Test case # of Data centers # of Continents

Global Large 11 5
Global Small 5 5
Regional Europe 5 1
Regional US 5 1

8. The clients’ regions are Japan, Korea, India, Singapore, Australia,
Canada, Germany, Sweden, Ireland, United Kingdom, France, N. Vir-
ginia, Ohio, N. California, and Oregon. The client index in Fig. 13 fol-
lows the same order as the above-listed regions.

LI ETAL.: ARTEMIS: A LATENCY-ORIENTED NAMING AND ROUTING SYSTEM 4885

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

Experiment Result. Table 7 shows the percentile of
requests assigned to different data centers. Although the top
X data centers are used, most connections are still estab-
lished between the client and its optimal data center. This
phenomenon validates the efficiency of end-user mapping
as the optimal one is still selected when candidates compete.
We find that end-user mapping already performs well: the
chosen data center is the optimal one in over 90% of the cases.
Note that our evaluation method is not the same as how a
real Artemis runs: for the simplicity of running, we update
end-user mapping at the beginning of the experiment. This
is why the optimal server is correctly selected by end-user
mapping for almost all of the clients. However, in a real
deployment of Artemis, the end-user mapping is difficult if
not impossible to be up-to-date at the time of client query.
Refreshing the end-user mapping usually takes time because
updating a huge number of rows in the routing databases is
a significant burden to the system.

Our real-world evaluation has demonstrated a promising
reduction in various latency metrics from Artemis, compar-
ing with both DNS and anycast. In the future, we plan to
deploy real Internet services using Artemis and evaluate

with world-wide users, inspecting new challenges brought
by the huge number of users to Artemis, especially on its
routing infrastructure.

6 DISCUSSION

In this section, we discuss topics not covered in the previous
sections. I.e., a comparison between Artemis and DNS in
Section 6.1 and a comparison between Artemis and anycast
in Section 6.2. The feasibility of deploying Artemis in cloud
services in Section 6.3, and the security level of Artemis in
Section 6.4.

6.1 Artemis versus DNS

Artemis is a private system for service discovery, and DNS
is a public global name service. Although they are different
application targets, both can be used for name resolution
and service discovery. In this subsection, we compare Arte-
mis with DNS from these two aspects, and the summary is
shown in Table 8.

Name resolution is the basic functionality of DNS. With
the help of dedicated DNS query and response packets,
DNS achieves the translation from a DNS name to an IP
address. This process causes name resolution delay as the
transmission of packets takes time. In Artemis, the name
resolution delay is eliminated because it is completed along
with the transport layer handshake process without relying
on additional packets. A DNS client knows where to send
DNS queries through specific protocols, e.g., dynamic host
configuration protocol (DHCP), or a manual configuration,
e.g., 8.8.8.8. Similarly, an Artemis client needs to know the
service prefix beforehand by obtaining an SDK from the ser-
vice provider. To save the name resolution delay and reduce
server load, DNS employs the cache mechanism, where the

TABLE 5
The Statics of Comparing Artemis With DNS and Anycast

Test cases Global Large Global Small Regional Europe Regional US

Service discovery method Artemis DNS Anycast Artemis DNS Anycast Artemis DNS Anycast Artemis DNS Anycast

Mean connection setup latency (ms) 23.2 38.3 20.9 77.8 55.1 76.4 135.9 140.6 132.4 94.6 98.7 90.8
Mean query latency (ms) 41.0 56.5 40.8 113.4 95.8 151.6 260.9 265.5 263.7 179.0 183.7 180.2

Fig. 13. Comparison of transport layer performance between Artemis, DNS, and anycast under different test cases. The entire bar represents the
query latency. The shadow part of the bar represents the connection setup latency, which is a composition of the query latency.

TABLE 6
Probability of Anycast’s Sub-Optimal Routing and the Additional
Latency Caused by the Sub-Optimal Routing Under Different

Server Deployment Options

Test Cases Optimal Routing Ratio Anycast Additional
Latency (ms)

Global Large 20.0% 1.78
Global Small 20.0% 41.08
Regional Europe 13.3% 6.00
Regional US 6.7% 4.33

4886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

DNS query result is cached on the client, and new queries to
the same DNS name will never be sent until its TTL expires.
The change in DNS records fails to take effect on the client
immediately because there is no way for the server to invali-
date the client-side cache. In Artemis, the client-side cache
can be invalidated by not only the TTL but also the server.
Whenever a transport layer handshake with the cached
name resolution result fails, the client immediately invalid-
ates the cache and rolls back to the normal name resolution
process in Artemis. Regarding security, in Artemis, the
name resolution information embedded in the handshake
packet is also protected by the transport layer encryption.
DNS provides a similar security level via the use of DNS
Security Extensions (DNSSEC).

DNS may also be used for service discovery by returning
different responses to the sameDNS name [8], [14]. With end-
user mapping [14], the authoritative name server’s response
is based on the client’s location and server’s load, thus achiev-
ing latency-oriented routing and load balancing. From this
point on, both DNS and Artemis can direct a client to the best
server replica based on custom policies. However, as men-
tioned above, DNS suffers from additional query latency and
inevitable information propagation delay, which are the pri-
mary strength of Artemis comparedwithDNS.

Although being of similar functionality, Artemis is not
meant to replace DNS. Instead, it provides an alternative
naming solution that could coexist with DNS. Artemis is
more suitable for the scenario where replica servers are
deployed globally. One potential scenario is the cloud-based
global services. Cloud providers register anycast network
prefixes, distribute Artemis names to the customers and
support the deployment of the Artemis infrastructure. Cus-
tomers deploy replica servers directly in the selected cloud’s
data centers. End-users can obtain low-latency services by
applying the ServiceID mapping patch provided by the
cloud.

6.2 Artemis versus Anycast

Anycast routing is an effective service discovery solution
because of its efficiency in routing packets to the nearest
replica server and its native support in the Internet routing.
Despite its benefits, its limitations are obvious, for example,
lack of application layer control [8], difficulty in manage-
ment [5], and possibility of poor end-to-end latency [52]. To
address these issues, Artemis relies on an overlay network
to enhance anycast routing.

Application Layer Control. Application layer control
requires the packet routing to be instructed not only by net-
work metrics, e.g., end-to-end latency, but also by applica-
tion-related metrics, e.g., server load. Artemis supports
application layer control by allowing a replica server to be
added to or to be removed from the routing infrastructure
dynamically. For example, an overloaded server can
remove itself from the routing database to avoid new
incoming connections and can add itself back when the
incoming traffic has reduced to a reasonable level. In case a
packet arrives at an anycast zone without any replica server
for the specific application, Artemis automatically redirects
it to a nearby zone with a proper serving capability. In sum-
mary, with the help of the overlay network, Artemis sup-
ports more packet routing criteria and is more robust to the
route change, comparing with IP anycast.

Easy Management. In general, it is difficult to deploy a ser-
vice on top of IP anycast globally because the network
administrator must obtain an address block of adequate size
(e.g., /24) and advertise it via BGP to its upstream ISP. Simi-
lar to [5], Artemis serves as an anycast-based infrastructure
to help the network administrator address these deploy-
ment challenges. By deploying over Artemis, developers
can focus on building a server running on top of a unicast
IP address without worrying about the difficulty in manag-
ing an anycast network.

Low End-to-End Latency. Ideally, IP anycast routes packets
to the nearest of a group of hosts according to the minimal-
hop rule. However, the reached host might be a bit far away
from the packet sender, although there are closer options. A
measurement on the DNS D-root servers shows that anycast
routing finds a host further than 1,000km away from the
nearest host in about 10% of the cases [52]. To avoid the
unnecessary latency caused by such unexpected routing,
Artemis redirects packets back to their nearest anycast
zones over the overlay network. In our evaluation setup as
shown in Section 5.2, Artemis, on average, saves the end-to-
end latency by 5.0% from anycast routing.

TABLE 7
The Percentages of Clients That Reach Different Data Centers

ParameterX Data Center Candidates

1st 2nd 3rd 4th

1 100% / / /
2 100% 0% / /
3 93.3% 6.7% 0% /
4 93.3% 6.7% 0% 0%

TABLE 8
A Comparison Between DNS and Artemis in Terms of Name Resolution and End-User Mapping

Category Functionality DNS Artemis

Name resolution

Query message Dedicated packets Integrated with QUIC handshake packets
Cache invalidation By client By client and server
Record update delay up to 30 minutes [53] No significant delay
Security Encrypted (optional) Encrypted (mandatory)
Name space Global unique Localized

End-user mapping

Custom policy Supported Supported
Query delay up to seconds [50] No significant delay
Propagation delay up to 30 minutes No significant delay

LI ETAL.: ARTEMIS: A LATENCY-ORIENTED NAMING AND ROUTING SYSTEM 4887

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

6.3 Deployment Requirements

In this subsection, we discuss the feasibility of deploying
Artemis in cloud services.

Easy Integration Into the Existing Network Infrastructure.
Artemis can be integrated in a cloud service as an alterna-
tive to its existing load balancer. As shown in Fig. 14, the cli-
ent communicates with the server via the latter’s public IP
address in the classic client-server model. Adding the load
balancer as a proxy between the client and the server allows
the cloud service to distribute client requests evenly among
application servers. Usually, the load balancer needs to
keep records of the live connections to ensure the binding
between a client and a server [18], [54]. Artemis works the
same way as legacy load balancers, with the difference that
only the handshake packets go through its overlay routing,
with Service Addresses, while the other packets are trans-
mitted directly between the client and the server, with the
servers’ unicast IP addresses.

Regarding this, deploying Artemis in a cloud service
requires 1) replacing the implementation of legacy load bal-
ancers with Service Dispatchers and 2) adding additional
NICs to the application server.

Changes in Application Servers. As mentioned in Sec-
tion 4.2, Artemis does not require any change on the QUIC
implementation, as long that the preferred_address feature is
appropriately implemented. In the application code, there
needs to be a minor change to make QUIC listen on two
UDP ports simultaneously, one on the anycast address and
the other on the unicast address. In practice, it only requires
a few lines of code dealing with multiple sockets.

Delivery to Clients. The client needs to obtain an SDK,
which implements the name resolution function as men-
tioned in Section 4.2, from the cloud service the first time
using Artemis. Also, the application code should be modi-
fied to invoke Artemis, instead of DNS, for name resolution
as mentioned in Section 4.2, which requires only a single
line of code change. An SDK is bound with an Artemis
deployment because the deployment’s service prefix, i.e.,
anycast IP prefix, is hard coded into the SDK. In practice,
the application service provider could build an Artemis var-
iation of its client program to allow its clients to use Arte-
mis, instead of DNS, for name resolution.

6.4 Security Concerns

Artemis is designed carefully with security in consideration.
In this subsection, we study representative attack cases, which
demonstrate howArtemis is resilient tomalicious attackers.

Distributed Denial-of-Service (DDoS) Attack. With DDoS,
the attacker aims to overload a server with a large number
of queries from a bunch of clients. Artemis protects both
itself and its hosted application servers from such attacks.

For Artemis, its routing infrastructure, i.e., Service Dis-
patchers, is stateless, i.e., does not maintain connection state
and end-user mapping records, making a single router able
to handle a large number of connections and more routers
able to work as duplicates for sharing loads. For application
servers, like other load balancers [55], Artemis supports
temporarily removing a heavily loaded server from the
overlay routing table (Section 3.4) to avoid overloading. In
this way, the requests exceeding a server’s capability of han-
dling will be redirected to nearby servers.

Man in the Middle (MITM) Attack. With MITM, the
attacker secretly sniffs and possibly tampers messages
between two communicators by pretending to be a partici-
pant in the middle. The solution to this attack is encrypting
the messages and verifying the other end-host’s identity via
a trusted certificate authority [56], which is supported by
QUIC [43], i.e., TLS 1.3. As Artemis is domain-oriented and
the applications’ servers are exposed by Artemis names
instead of IP addresses, the client can always actively check
the server’s identity to avoid MITM attacks.

Name Resolution Hijacking. In Artemis, the risk exists that
the Service Dispatchers may maliciously route packets to
servers who do not own the target Artemis name, i.e.,
hijacking a name. The same problem exists in DNS, where
an LDNS or a public DNS server can easily respond with a
malicious DNS name. The same as DNS, hijacking is not
avoidable but detectable in Artemis. In Artemis, all applica-
tion servers must own an X.509 certificate [43] signed by a
trusted authority to prove their ownership of the names. In
this way, the client can verify that it is connected to a real
server, instead of a pretended one, through the online certif-
icate status protocol (OCSP). The OCSP lookup latency can
be further eliminated by using OCSP stamping.

In summary, benefiting from the QUIC and TLS 1.3’s
security model, Artemis is resilient to representative attacks.
Also, the scalable design in Artemis makes the system
robust on heavy loads.

7 CONCLUSION

In this paper, we propose Artemis, a low-latency naming
and routing system that reduces the connection setup
latency by eliminating the name resolution latency. With an
additional layer composed of Service Dispatchers, Artemis
can participate in the handshake process and achieve opti-
mal server selection for the clients based on customizable
policies. The simulation shows that Artemis reduces the
average connection setup latency by 36.8%, compared with
the state-of-the-art DNS solution. Artemis represents an
exciting new opportunity of low latency service discovery
for globally deployed Internet services.

The evaluation over commercial clouds shows that Artemis
reduces both the connection setup and end-to-end latency com-
pared with DNS and anycast, whether deployed regionally or
globally. The latency would further decrease when Artemis
becomes available in more data centers. In our deployment
with 11 globally-scaled data centers, Artemis reduces the con-
nection setup latency and the transmission latency by 39.4%
and 27.4%, respectively, comparedwithDNS.

The design of Artemis is coupled with the transport layer
protocol because it modifies the handshake packets for

Fig. 14. A comparison between Artemis and traditional load balancers.

4888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

name resolution. In this paper, we take advantage of
QUIC’s support in connection migration and packet cus-
tomization and present a prototype of Artemis. In the
future, we plan to implement Artemis over other transport
layer protocols that support late binding.

REFERENCES

[1] Latency is Everywhere and it Costs You Sales - How to Crush it.
Jul. 2009. [Online]. Available: http://highscalability.com/latency-
everywhere-and-it-costs-you-sales-how-crush-it

[2] B. Briscoe et al., “Reducing Internet Latency: A Survey of Techni-
ques and their Merits,” IEEE Commun. Surveys Tuts., vol. 18, no. 3,
pp. 2149–2196, Jul.-Sep. 2016.

[3] B. Ager, W. M€uhlbauer, G. Smaragdakis, and S. Uhlig,
“Comparing DNS resolvers in the wild,” in Proc. ACM Int. Meas.
Conf., 2010, pp. 15–21.

[4] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall, “Demystifying page load performance with WProf,”
in Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2013,
pp. 473–486.

[5] H. Ballani and P. Francis, “Towards a global IP anycast service,”
in Proc. Conf. Appl. Technol. Archit. Protoc. Comput. Commun., 2005,
pp. 301–312.

[6] M. Prince, “A brief primer on anycast,” Oct. 2011. [Online]. Avail-
able: https://blog.cloudflare.com/a-brief-anycast-primer

[7] F. Chen, R. K. Sitaraman, and M. Torres, “End-user mapping:
Next generation request routing for content delivery,” in Proc.
ACM SIGCOMM Conf., 2015, pp. 167–181.

[8] A. Flavel et al., “FastRoute: A scalable load-aware anycast routing
architecture for modern CDNs,” in Proc. USENIX Symp. Netw.
Syst. Des. Implementation, 2015, pp. 381–394.

[9] F. Wohlfart, N. Chatzis, C. Dabanoglu, G. Carle, andW. Willinger,
“Leveraging interconnections for performance: The serving infra-
structure of a large CDN,” in Proc. Conf. ACM Special Int. Group
Data Commun., 2018, pp. 206–220.

[10] X. Li, B. Liu, Y. Chen, Y. Xiao, J. Tang, and X. Wang, “Artemis: A
practical low-latency naming and routing system,” in Proc. ACM
22nd Int. Conf. Parallel Process., 2019, pp. 60:1–60:10.

[11] M. Thomson and J. Iyengar, “QUIC: A UDP-based multiplexed
and secure transport,” 2021. [Online]. Available: https://doi.org/
10.17487/rfc9000

[12] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP:
Connection migration for service continuity in the Internet,” in
Proc. IEEE 22nd Int. Conf. Distrib. Comput. Syst., 2002, pp. 469–470.

[13] B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara, and S.
Thorne, The Site Reliability Workbook: Practical Ways to Implement
SRE. Sebastopol, CA, USA: O’Reilly Media, Inc., 2018.

[14] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: A
platform for high-performance internet applications,” ACM
SIGOPS Operating Syst. Rev., vol. 44, pp. 2–19, 2010.

[15] Y.-D. Song, A. Mahanti, and S. C. Ravichandran, “Understanding
evolution and adoption of top level domains and DNSSEC,” in
Proc. IEEE Int. Symp. Meas. Netw., 2019, pp. 1–6.

[16] T. Jarassriwilai, T. Dauber, N. Brownlee, and A. Mahanti,
“Understanding evolution and adoption of top-level domain
names,” in Proc. IEEE Local Comput. Netw. Conf. Workshops, 2015,
pp. 687–694.

[17] C. Contavalli, W. van der Gaast, D. C. Lawrence, and W. Kumari,
“Client subnet in DNS queries,” 2016. [Online]. Available:
https://doi.org/10.17487/rfc7871

[18] D. E. Eisenbud et al., “Maglev: A fast and reliable software net-
work load balancer,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2016, pp. 523–535.

[19] Y. Rekhter and K. Lougheed, “Border gateway protocol (BGP),”
1989. [Online]. Available: https://doi.org/10.17487/rfc1105

[20] R. de Oliveira Schmidt, J. Heidemann, and J. H. Kuipers, “Anycast
latency: How many sites are enough?,” in Proc. Springer Int. Conf.
Passive Act. Netw. Meas., 2017, pp. 188–200.

[21] G. C. Moura et al., “Anycast vs. DDoS: Evaluating the November
2015 root DNS event,” in Proc. ACM Int. Meas. Conf., 2016,
pp. 255–270.

[22] S. Sarat, V. Pappas, and A. Terzis, “On the use of anycast in DNS,”
in Proc. IEEE Int. Conf. Comp. Commun. Netw., 2006, pp. 71–78.

[23] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye,
“Analyzing the performance of an anycast CDN,” in Proc. Int.
Meas. Conf., 2015, pp. 531–537.

[24] D. Cicalese, J. Aug�e, D. Joumblatt, T. Friedman, and D. Rossi,
“Characterizing IPv4 anycast adoption and deployment,” in Proc.
ACM Conf. Emerg. Netw. Experiments Technol., 2015, pp. 1–13.

[25] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and
R. Govindan, “Mapping the expansion of Google’s serving infra-
structure,” in Proc. ACM Int. Meas. Conf., 2013, pp. 313–326.

[26] L. Wei and J. Heidemann, “Does anycast hang up on you (UDP
and TCP)?,” IEEE Trans. Netw. Service Manag., vol. 15, no. 2,
pp. 707–717, Jun. 2018.

[27] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, and Z.-L. Zhang, “A tale of
three CDNs: An active measurement study of Hulu and its
CDNs,” in Proc. IEEE INFOCOMWorkshops, 2012, pp. 7–12.

[28] L. Wang, V. Pai, and L. Peterson, “The effectiveness of request
redirection on CDN robustness,” in Proc. ACM SIGOPS Conf.,
2003, pp. 345–360.

[29] R.-H. Huang, B.-J. Chang, Y.-L. Tsai, and Y.-H. Liang, “Mobile
edge computing-based vehicular cloud of cooperative adaptive
driving for platooning autonomous self driving,” in Proc. IEEE
Int. Symp. Cloud Service Comput., 2017, pp. 32–39.

[30] Y. Zhang et al., “BDS: A centralized near-optimal overlay network
for inter-datacenter data replication,” in Proc. 13th EuroSys Conf.,
2018, pp. 1–14.

[31] P. Medagliani, S. Paris, J. Leguay, L. Maggi, C. Xue, and H. Zhou,
“Overlay routing for fast video transfers in CDN,” in Proc. IFIP/
IEEE Symp. Integr. Netw. Service Manage., 2017, pp. 531–536.

[32] G. Calvigioni, R. Aparicio-Pardo, L. Sassatelli, J. Leguay, P. Meda-
gliani, and S. Paris, “Quality of experience-based routing of video
traffic for overlay and ISP networks,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 935–943.

[33] D. Zhuo et al., “Slim: OS kernel support for a low-overhead con-
tainer overlay network,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2019, pp. 331–344.

[34] C. Fang et al., “VTrace: Automatic diagnostic system for persistent
packet loss in cloud-scale overlay network,” in Proc. Annu. Conf.
ACM Special Int. Group Data Commun. Appl. Technol. Archit. Protoc.
Comput. Commun., 2020, pp. 31–43.

[35] T. Hansen and E. Donald, “US secure hash algorithms (SHA and
HMAC-SHA),” 2006. [Online]. Available: https://doi.org/10.17
487/rfc4634

[36] Internet Architecture Board, “IAB technical comment on the
unique DNS root,” 2000. [Online]. Available: https://doi.org/
10.17487/rfc2826

[37] T. Lemon and R. Droms, “Special-use domain names problem
statement,” 2017. [Online]. Available: https://doi.org/10.17487/
rfc8244

[38] E. Rescorla, “The transport layer security (TLS) protocol version
1.3,” 2018. [Online]. Available: https://doi.org/10.17487/rfc8446

[39] IPv6 – Google, 2022. [Online]. Available: https://www.google.
com/intl/en/ipv6/statistics.html

[40] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle, “Scanning the IPv6
Internet: Towards a comprehensive hitlist,” 2016, arXiv:1607.05179.

[41] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast
Internet-wide scanning and its security applications,” in Proc.
USENIX Symp. Netw. Syst. Des. Implementation, 2013, pp. 605–620.

[42] K. Park, V. S. Pai, L. Peterson, and Z. Wang, “CoDNS: Improving
DNS performance and reliability via cooperative lookups,” in Proc.
6th Symp. Operating Syst. Des. Implementation, 2004, pp. 199–214.

[43] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, “How secure
and quick is QUIC? Provable security and performance analyses,”
in Proc. IEEE Symp. Secur. Privacy, 2015, pp. 214–231.

[44] B. Pfaff et al., “The design and implementation of Open vSwitch,”
in Proc. USENIX Conf. Netw. Syst. Des. Implementation, 2015,
pp. 117–130.

[45] P. Jurkiewicz, G. Rzym, and P. Bory»o, “Flow length and size dis-
tributions in campus Internet traffic,” Elsevier Comput. Commun.,
vol. 167, pp. 15–30, 2021.

[46] V. Bajpai and J. Sch€onw€alder, “A survey on Internet performance
measurement platforms and related standardization efforts,”
IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1313–1341,
Jul.–Sep. 2015.

[47] J. L. Martin, “DNS resolver 1.1.1.1 from Cloudflare,” 2018. [Online].
Available: https://conference.apnic.net/46/assets/files/APNC402/
DNS-resolver-1.1.1.1-from-Cloudflare.pdf

LI ETAL.: ARTEMIS: A LATENCY-ORIENTED NAMING AND ROUTING SYSTEM 4889

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://blog.cloudflare.com/a-brief-anycast-primer
https://doi.org/10.17487/rfc9000
https://doi.org/10.17487/rfc9000
https://doi.org/10.17487/rfc7871
https://doi.org/10.17487/rfc1105
https://doi.org/10.17487/rfc4634
https://doi.org/10.17487/rfc4634
https://doi.org/10.17487/rfc2826
https://doi.org/10.17487/rfc2826
https://doi.org/10.17487/rfc8244
https://doi.org/10.17487/rfc8244
https://doi.org/10.17487/rfc8446
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://conference.apnic.net/46/assets/files/APNC402/DNS-resolver-1.1.1.1-from-Cloudflare.pdf
https://conference.apnic.net/46/assets/files/APNC402/DNS-resolver-1.1.1.1-from-Cloudflare.pdf

[48] X. Fan, J. Heidemann, and R. Govindan, “Evaluating anycast in
the domain name system,” in Proc. IEEE Conf. Comput. Commun.,
2013, pp. 1681–1689.

[49] D. Cicalese, D. Joumblatt, D. Rossi, M.-O. Buob, J. Aug�e, and
T. Friedman, “A fistful of pings: Accurate and lightweight anycast
enumeration and geolocation,” in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM), 2015, pp. 2776–2784.

[50] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance
and the effectiveness of caching,” IEEE/ACM Trans. Netw., vol. 10,
no. 5, pp. 589–603, Oct. 2002.

[51] A. Singla, B. Chandrasekaran, P. B. Godfrey, and B. Maggs, “The
Internet at the speed of Light,” in Proc. ACM Workshop Hot Topics
Netw., 2014, pp. 1–7.

[52] Z. Li, D. Levin, N. Spring, and B. Bhattacharjee, “Internet anycast:
Performance, problems, & potential,” in Proc. Conf. ACM Special
Int. Group Data Commun., 2018, pp. 59–73.

[53] Z. Gao and A. Venkataramani, “Measuring update performance
and consistency anomalies in managed DNS services,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 2206–2214.

[54] J. Varia and S. Mathew, “Overview of Amazon web services,”
2013. [Online]. Available: http://cabibbo.dia.uniroma3.it/asw-
2014–2015/altrui/AWS_Overview.pdf

[55] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching
ASICs,” in Proc. Conf. ACM Special Int. Group Data Commun., 2017,
pp. 15–28.

[56] D. Cooper, S. Farrell, S. Boeyen, R. Housley, and T. Polk, “Internet
X.509 public key infrastructure certificate and certificate revoca-
tion list (CRL) profile,” 2008. [Online]. Available: https://doi.
org/10.17487/rfc5280

Xuebing Li received the BSc and MSc degrees
in computer science from Fudan University,
Shanghai, China, in 2016 and 2020, respectively.
He is currently working toward the PhD degree in
electrical engineering with Aalto University. His
main research interests include network meas-
urements, network protocols, and Internet archi-
tectures.

Yang Chen (Senior Member, IEEE) received the
BS and PhD degrees in electrical engineering
from the Department of Electronic Engineering,
Tsinghua University, Beijing, China, in 2004 and
2009, respectively. He is currently an associate
professor within the School of Computer Science,
Fudan University, China. He leads the Mobile
Systems and Networking (MSN) Group since
2014. Before joining Fudan, he was a postdoc-
toral associate with the Department of Computer
Science, Duke University, USA, where he served

as senior personnel in the NSF MobilityFirst project. From September
2009 to April 2011, he has been a research associate and the deputy
head of Computer Networks Group, Institute of Computer Science, Uni-
versity of G€ottingen, Germany. He visited Stanford University (in 2007)
and Microsoft Research Asia (2006-2008) as a visiting student. His
research interests include online social networks, Internet architecture,
and mobile computing. He is serving as an editorial board member of
the Transactions on Emerging Telecommunications Technologies (ETT)
and an associate editor of the Computer Communications. He served as
an OC / TPC member for many international conferences, including
SOSP, SIGCOMM, WWW, IJCAI, AAAI, IWQoS, DASFAA, ICCCN,
GLOBECOM and ICC. He published more than 50 referred papers in
international journals and conferences, including the IEEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on Dependable
and Secure Computing, IEEE Transactions on Mobile Computing, IEEE
Transactions on Knowledge and Data Engineering, IEEE Transactions
on Services Computing, IEEE Transactions on Network and Service
Management, IEEE Transactions on Computational Social Systems,
IEEE Communications Magazine, IEEE Software, Middleware, INFO-
COM, ICDE, COSN, CIKM, and IWQoS.

Mengying Zhou received the BSc degree in
information security from Lanzhou University,
Lanzhou, China, in 2019. She is currently working
toward the PhD degree in computer science with
Fudan University, Shanghai, China. Her main
research interests include network measurement,
social networks, and data mining.

Tiancheng Guo received the BSc degree in
computer science from Fudan University, China,
in 2020. He is currently working toward the MSc
degree in computer science with Fudan Univer-
sity, China. His research interests include social
computing, network routing, and urban mobility.

Chenhao Wang received the BSc degree in
computer science from Fudan University, China,
in 2021. He is currently working toward the PhD
degree in computer science with Fudan Univer-
sity, China. His main research interests include
network measurements, network routing, and
machine learning.

Yu Xiao (Member, IEEE) received the doctoral
degree in computer science from Aalto University,
in 2012. She is currently an associate professor
with the Department of Communications and Net-
working, Aalto University, Espoo, Finland. Her
current research interests include edge comput-
ing, wearable sensing, and extended reality.

Junjie Wan received the MS degree in informa-
tion science from the University of North Carolina
at Chapel Hill, USA, in 2017. He is currently a
senior engineer of Network Technology Labora-
tory at Huawei, China. His research interests
include network architecture, routing protocol,
and network service.

Xin Wang (Member, IEEE) received the BSc
degree in information theory and the MSc degree
in communication and electronic systems from
Xidian University, China, in 1994 and 1997,
respectively, and the PhD degree in computer sci-
ence from Shizuoka University, Japan, in 2002.
He is currently a professor with Fudan University,
Shanghai, China. His main research interests
include quality of network service, next genera-
tion network architecture, mobile Internet, and
network coding.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 03,2022 at 09:50:38 UTC from IEEE Xplore. Restrictions apply.

http://cabibbo.dia.uniroma3.it/asw-2014--2015/altrui/AWS_Overview.pdf
http://cabibbo.dia.uniroma3.it/asw-2014--2015/altrui/AWS_Overview.pdf
https://doi.org/10.17487/rfc5280
https://doi.org/10.17487/rfc5280

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

