
Locating CDN Edge Servers with HTTP Responses
Run Huang, Mengying Zhou, Tiancheng Guo, Yang Chen∗

Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China
{runhuang19,myzhou19,tcguo20,chenyang}@fudan.edu.cn

ABSTRACT
Determining the physical locations of CDN Points of Presence
(PoPs) is fundamental to understanding and diagnosing CDN ser-
vices. Yet, the popular deployment of IP Anycast in CDNs has
rendered existing geolocation tools unreliable. To fill this gap, we
present an HTTP-based solution that leverages subtle geographic
hints in HTTP responses to locate CDN PoPs at the city-level gran-
ularity. The evaluation shows that our technique achieves over 90%
accuracy with an average error distance of less than 40 km.

CCS CONCEPTS
• Networks → Network measurement.

KEYWORDS
Geolocation, Measurement, CDN
ACM Reference Format:
Run Huang, Mengying Zhou, Tiancheng Guo, Yang Chen. 2022. Locating
CDN Edge Servers with HTTP Responses. In ACM SIGCOMM 2022 Con-
ference (SIGCOMM ’22 Demos and Posters), August 22–26, 2022, Amsterdam,
Netherlands. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3546037.3546051

1 INTRODUCTION
Geolocation of CDN PoPs is of interest to both academia and
industry. It is essential to CDN security and performance anal-
ysis [2, 17, 18]. Many researchers, web developers, and businesses
rely on such information to monitor and diagnose the operation
of CDN-related services. However, existing geolocation techniques
are mostly IP-based, assuming a single location per IP address, and
thereby fail with Anycast CDNs, whose replicas at different loca-
tions share the same IP address. This raises the need for a tool that
yields more reliable and accurate geolocation results for CDNs.

Fortunately, many CDN providers embed geographic hints (geo-
hints) about the physical locations of their edge servers in specific
HTTP response headers. Yet, it is not easy to interpret and exploit
these hints for geolocation due to their ambiguity, diverse forms,
and lack of documentation. To cope with these challenges, we em-
ploy text mining techniques and conduct latency measurements
to identify geohints and then infer their corresponding locations.
Leveraging this approach, we monitored 22 popular CDNs and iden-
tified the presence of geohints in 20 of them. We publicly release
∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9434-5/22/08.
https://doi.org/10.1145/3546037.3546051

the dataset of regular expressions for extracting these geohints and
the mappings between each hint and a physical location. Based on
this dataset, we implemented LocEdge, an open-source tool that
provides rich information about CDN edge servers (such as vendor,
location, and cache hit ratio), aiming to equip web developers and
researchers with a handy CDN troubleshooting tool. The dataset
and LocEdge can be accessed from https://github.com/ruh010/ locedge.

Geohints at a Glance. Table 1 summarizes the identified geohints,
showing that they may appear anywhere in various HTTP headers,
and do not necessarily have semantics, making them difficult to
identify and interpret manually, let alone infer their corresponding
locations. Worse, only seven headers are confirmed by official doc-
umentation to embody geohints, while only five providers openly
disclose the geohint-to-city mappings.

Table 1: Identified Geohints (pink italic text)
Type CDNs Examples of Geohint in San Jose, CA

IATA Code Amazon; CacheFly; CDNetworks;
Cloudflare; Azure; Fastly; Tata;

CDN: CacheFly; Header: X-CF1
*****:fF.lax3:co:**********:cacheN.sjc1-01:B

Location
Abbreviation

Edgecast; KeyCDN; StackPath;
CDN77; Bunny;

CDN: StackPath; Header: X-HW
**********.cds212.sj3.hn,**********.cds218.sj3.c

Customize ID Alibaba; ArvanCloud; Beluga; OVH;
G-Core; Medianova; Sucuri; Section;

CDN: Beluga; Header: X-Beluga-Node
89bfd0a5-6bc3-4f66-8f39-c245d891092a

Related Works. Luckie et al. [12] proposed a learning-based ap-
proach to extract geohints from DNS names to locate Internet
routers, which enables researchers to infer the location of an end-
point via traceroute. However, in §3 we show that this method is
not widely applicable in practice. Cicalese et al. [4] used a latency-
based approach to locate Anycast replicas, but it requires lots of
probes to conduct active measurements, making it less convenient
to use than database-driven methods like [7, 8, 12, 15] and ours.

2 SYSTEM OVERVIEW
Fig. 1 illustrates our system architecture. AMonitor performs HTTP
measurements toward target websites. Results are parsed by an
Extractor to retrieve geohints, whose corresponding locations are
inferred by a Localizer. Each component is described in detail below.

Monitor. We monitor the official websites of 22 popular CDNs
from 229 vantage points (VPs) deployed on Uptrends, a web moni-
toring platform [11]. For each visit, we collect HTTP responses and
the TCP handshake time. The latter is used to describe network
latency. Considering that many CDNs operate servers in only a few
dozen locations, we argue that this amount of VPs is sufficient to
enumerate most PoPs. However, a major drawback is that nearly
75% of Uptrends VPs are in Europe and N. America. Had there been
more in S. America and the Middle East, we could achieve higher
accuracy and coverage for those more widely distributed CDNs.

Extractor. We cannot apply the geohint extraction technique
in [12] directly because it is based on the observation that geohints
in DNS names follow specific naming conventions, which it is not
the case for geohints in HTTP headers, as shown in Tab. 1. Still, anal-
ysis of intelligible geohints (i.e. those of which the corresponding

https://doi.org/10.1145/3546037.3546051
https://doi.org/10.1145/3546037.3546051
https://doi.org/10.1145/3546037.3546051
https://github.com/ruh010/locedge

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Run Huang et al.

Figure 1: System Architecture
Table 2: Model accuracy and mean error distance

CDN Acc. (%) Mean Error (km) CDN Acc. (%) Mean Error (km)
LocEdge Baseline★ LocEdge Baseline★

Amazon 92.5 25.41 1056.20 KeyCDN 95.0 26.65 571.26
CacheFly 93.2 20.74 2238.12 StackPath 90.3 30.71 2116.04
Fastly 80.8 62.34 1831.47 Tata 94.7 44.40 1086.03

★ The optimal result combining three geolocation datasets [7, 8, 12]

location is disclosed by the vendor) revealed that a given geohint
appears frequently in a small set of adjacent VPs while rarely in
the others. Given that, we employ TF-IDF [14] to distinguish them
from gibberish, which is widely used for uncovering terms with a
similar characteristic, i.e. occurring frequently in a document but
rarely in the whole corpus. For simplicity, we divide the header into
several segments by punctuation. Then, we apply a sliding window
on each segment to enumerate the set of regular expressions for
all possible terms (based on the relative position to the beginning
of the segment), and calculate the likelihood of each regex as the
mean TF-IDF score of all terms it extracts. Regex with the highest
likelihood would be a candidate for geohint extraction.

As in [4, 12], we filter out ineligible candidates by detecting
Speed-of-Light violations among the terms they extract. For ex-
ample, VPs at San Jose and Tokyo both obtained “imperva” from
header “x-cdn” by a candidate, and their RTTs were 3 ms and 5
ms respectively. However, even light cannot travel from Tokyo to
San Jose, CA (8332km) in 8 ms, indicating that the two VPs were in
contact with different servers. Thus, “imperva” is not a geohint. For
a more conservative result, we apply the median inflation factor
of the TCP handshake time over the speed-of-light latency [16],
assuming that a packet travels 60km in 1 ms. Confirmed geohints
are then passed to the Localizer for location inference.

Localizer. We transform the geolocation task into a classification
problem. For each confirmed geohint𝑔 and the set of VPs mapped to
it, we use a Random Forest Classifier to compute the probability of
each VP being where𝑔’s corresponding PoP locates, and then assign
𝑔 to the one with the highest probability. The classifier takes the
first quartile RTT, the population, and airport traffic as features. It is
trained with officially labeled geohints released by Edgecast [6] and
Cloudflare [5]. The population metric is intended to bias the results
toward large cities where CDNs tend to place their servers [3].
However, in regions with a dense distribution of CDN PoPs, the
geohints of some major cities that have relatively small populations
are often mislabeled as their nearby megacities (e.g. mislabeling
Amsterdam/Osaka as London/Tokyo). We remedy such deficiency
by using airport traffic as a complementary metric, which further
describes the influence and importance of a city.

Finally, the system generates a dataset of (a) geo-related headers
and regexes for geohint extraction (b) inferred mappings between
each hint and a city. We will show that this dataset is accurate and
reliable in §3. Leveraging it, we implemented a CDN debugging
tool LocEdge for the community. For each resource recorded in the
HAR file [13] generated during web navigation, LocEdge uses the

above dataset to localize the edge server and retrieves hints of cache
status (HIT or MISS) from cache-related headers (e.g. x-hw). Note
that in order to expand the scope of applicability, for CDNs that do
not provide geohints (e.g. Akamai and Imperva), LocEdge performs
traceroute to the resolved IP address of the edge server and infers
its location by locating routers on the path using Hoiho [12].

3 EVALUATION AND DEMONSTRATION
Ground Truth. We obtain validation data for StackPath and

KeyCDN by crawling their incident pages [9, 10], and use the IATA
airport code [1] dataset as the ground truth for four CDNs that are
inferred to employ variants of the IATA code as geohints.

Baseline. For every endpoint, we evaluate our approach against
the best among the results of multiple geolocation techniques. We
run traceroutes toward target websites and identify the location
of an edge server by locating routers on the last five hops on its
path using Hoiho [12]. Notably, we find that only 21% of the paths
we measured can be located in this way, as many operators do
not give away geohints in DNS names. For the remaining paths,
the location of their destinations is determined by querying the IP
address of the penultimate hop in two popular commercial GeoIP
databases [7, 8]. Our reasoning for geolocating the penultimate hop
instead of the last hop is that the former is usually non-Anycasted,
and thus provides higher accuracy. We use the minimum error
distance among the three results as the baseline for each endpoint.

Evaluation. The results are shown in Tab. 2, where accuracy
refers to the percentage of our approach that correctly identifies
the corresponding city of a geohint. It shows that our technique
generally performs well, and significantly outperforms the baseline.
Erroneous results are mainly caused by the lack of VPs in S. Amer-
ica and the Middle East. Interestingly, CDNs’ inefficient routing also
accounts for inaccuracies. In our 14 days (May 4 to May 18, 2022) of
monitoring, KeyCDN consistently directed clients in Hong Kong to
servers in Los Angeles instead of the local one, resulting in the mis-
labeled geohint “cnhk”. Further Ping tests to keycdn.com revealed
that the average RTT in Hong Kong is 160 ms, compared with just
0.8 ms in other cities with a local PoP, indicating that this poor
proximity is not down to a specific protocol, but rather an issue on
the operator and ISP side. Such suboptimal client-server mappings
exist across all six providers and have distinct geographical patterns
(e.g. traffic from S. America tends to be directed to Miami). These
findings again raise the need for a more comprehensive evaluation
of CDNs, especially those relying on Anycast.

In conclusion, our approach effectively discovers the embedded
geohints in HTTP headers and uncovers their corresponding loca-
tions. It generalizes well on unseen CDNs despite being trained with
only a handful of data from two vendors. Hence, we believe that
the inferred geohint-to-city mappings for the remaining CDNs that
have no ground truth for validation are also accurate and reliable.

Demonstration.We built a demo website showcasing LocEdge’s
usage in CDN monitoring at https:// locedgex.web.app/ . Upon a request
to check an URL, a backend server will visit it and report any CDN-
related issues (e.g. PoP-switching, poor proximity, low cache hit
ratio) and details about the edge servers that handled the requests.
The website also displays a map of PoPs we observed, which helps
to understand where CDN vendors deploy their infrastructures.

https://locedgex.web.app/

Locating CDN Edge Servers with HTTP Responses SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES
[1] International Air Transport Association. 2022. IATA Airline and Location Codes.

https://www.iata.org/en/services/codes. Accessed: 2022-05-01.
[2] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra

Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Proc. of IMC.
[3] Danilo Cicalese, Jordan Augé, Diana Joumblatt, Dario Rossi, Marc-Olivier Buob,

and Timur Friedman. 2015. Lightweight Anycast Enumeration and Geolocation.
In INFOCOM WKSHPS.

[4] Danilo Cicalese, Diana Zeaiter Joumblatt, Dario Rossi, Marc-Olivier Buob, Jor-
dan Augé, and Timur Friedman. 2016. Latency-Based Anycast Geolocation:
Algorithms, Software, and Data Sets. IEEE J. Sel. Areas Commun. 34, 6 (2016),
1889–1903.

[5] Cloudflare Inc. 2022. Cloudflare Status. https://www.cloudflarestatus.com/.
Accessed: 2022-05-01.

[6] Edgecast Networks Inc. 2022. Edgecast PoP listing. https://docs.edgecast.com/
cdn/Content/Reference/POP_Listing.htm. Accessed: 2022-05-01.

[7] MaxMind Inc. 2022. GeoLite2 Free Geolocation Data. https://dev.maxmind.com/
geoip/geolite2-free-geolocation-data. Accessed: 2022-05-31.

[8] IP2Location. 2022. IP2Location™ IP Address Geolocation Database. https:
//www.ip2location.com/database/ip2location. Accessed: 2022-06-28.

[9] Proinity LLC. 2022. KeyCDN Status. https://status.keycdn.com. Accessed:
2022-05-18.

[10] StackPath LLC. 2022. StackPath Status. https://status.stackpath.com. Accessed:
2022-05-18.

[11] Uptrends LLC. 2022. Website monitoring and web performance monitoring.
https://www.uptrends.com. Accessed: 2022-05-01.

[12] Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Mar-
ianne Fletcher, and Kimberly C. Claffy. 2021. Learning to Extract Geographic
Information from Internet Router Hostnames. In Proc. of CoNEXT.

[13] Jan Odvarko. 2022. HAR 1.2 Spec. http://www.softwareishard.com/blog/har-12-
spec. Accessed: 2022-05-01.

[14] Claude Sammut and Geoffrey I. Webb. 2010. Encyclopedia of Machine Learning.
986–987.

[15] Quirin Scheitle, Oliver Gasser, Patrick Sattler, and Georg Carle. 2017. HLOC:
Hints-Based Geolocation Leveraging Multiple Measurement Frameworks. In Proc.
of TMA.

[16] Ankit Singla, Balakrishnan Chandrasekaran, Brighten Godfrey, and Bruce M.
Maggs. 2014. The Internet at the Speed of Light. In Proc. of HotNets.

[17] Jing’an Xue, Weizhen Dang, Haibo Wang, Jilong Wang, and Hui Wang. 2019.
Evaluating Performance and Inefficient Routing of an Anycast CDN. In Proc. of
IWQoS.

[18] Mengying Zhou, Tiancheng Guo, Yang Chen, Junjie Wan, and Xin Wang. 2021.
Polygon: A QUIC-Based CDN Server Selection System Supporting Multiple
Resource Demands. In Proc. of Middleware.

https://www.iata.org/en/services/codes
https://www.cloudflarestatus.com/
https://docs.edgecast.com/cdn/Content/Reference/POP_Listing.htm
https://docs.edgecast.com/cdn/Content/Reference/POP_Listing.htm
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://www.ip2location.com/database/ip2location
https://www.ip2location.com/database/ip2location
https://status.keycdn.com
https://status.stackpath.com
https://www.uptrends.com
http://www.softwareishard.com/blog/har-12-spec
http://www.softwareishard.com/blog/har-12-spec

	Abstract
	1 Introduction
	2 System Overview
	3 Evaluation and Demonstration
	References

