
Polygon: A QUIC-Based CDN Server Selection System
Supporting Multiple Resource Demands

Mengying Zhou1,2, Tiancheng Guo1,2, Yang Chen1,2, Junjie Wan3, Xin Wang1,2
1School of Computer Science, Fudan University, China

2Shanghai Key Lab of Intelligent Information Processing, Fudan University, China
3Huawei Technologies Co., Ltd., China

{myzhou19,tcguo20,chenyang,xinw}@fudan.edu.cn,wanjunjie2@huawei.com

ABSTRACT
CDN is a critical Internet infrastructure that helps Internet users get
contents with a short delay. With the development of CDN applica-
tion scenarios, CDN requests will involve more than one resource
type. Unfortunately, the existing CDN server selection schemes tar-
geting one resource type cannot select the most suitable CDN server
by considering different resource types together. In this paper, we
propose Polygon, a CDN server selection system supporting multi-
ple resource demands. The keystone of Polygon is the deployment
of a set of dispatchers at strategic network locations, which can be
accessed via anycast. The dispatchers are responsible for resource
status collection, server assignment with resource demands, and
forwarding requests to suitable CDN servers. Meanwhile, Polygon
adopts the 0-RTT and connection migration features of the QUIC
protocol to mitigate the extra delay for connection and forwarding.
We conduct real-world experiments on the Google Cloud Platform
to demonstrate the advantages of Polygon. The results show that
the deployment of the dispatchers enables Polygon to provide a
better CDN service with a median job completion time reduction of
up to 54.8%. Also, Polygon improves resource utilization efficiency
by 13% in terms of bandwidth and by 7% in terms of CPU.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Network
resources allocation.

KEYWORDS
CDN, QUIC, Anycast, Dispatchers, Overlay Network

ACM Reference Format:
Mengying Zhou1,2, Tiancheng Guo1,2, Yang Chen1,2, Junjie Wan3, Xin
Wang1,2. 2021. Polygon: A QUIC-Based CDN Server Selection System Sup-
porting Multiple Resource Demands. In International Middleware Conference
Industrial Track (Middleware Industry ’21), December 6–10, 2021, Virtual
Event, Canada. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3491084.3491428

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware Industry ’21, December 6–10, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9152-8/21/12. . . $15.00
https://doi.org/10.1145/3491084.3491428

1 INTRODUCTION
Content Delivery Network (CDN) is a critical Internet technology
to provide quick responses to users’ requests. By replicating con-
tents, such as pictures, videos, databases, from the source server to
a series of CDN servers worldwide, users can access these contents
through nearby CDN servers. A reasonable allocation of replication
CDN servers to users is the core assurance of CDN deployment. The
traditional CDN server selection scheme is based on Domain Name
Service (DNS) redirection [30], which is widely deployed by the
largest CDN service providers such as Akamai. Recently, a series
of anycast-based CDN solutions have been emerging. Anycast [31]
allows mapping the same IP address to multiple servers and return-
ing the server with the shortest routing path, which is naturally
suitable for distributed networked systems like CDNs. However,
anycast is not aware of the load status (e.g., CPU usage) of the CDN
servers [8, 23]. To address this problem, there are several anycast-
based CDN proposals realizing the load awareness [2, 3, 12]. One of
them, named FastRoute [11], has been deployed in the production
environment of the Bing search engine [6].

Unfortunately, these proposals still have the shortcoming of
focusing on a single resource type, which brings the problem of
incapable of selecting the most suitable CDN server by con-
sidering different resource types together. According to our mo-
tivating case study in §2, different CDN requests might require
different types of resources. For instance, downloading large con-
tents requires high bandwidth, while obtaining a set of small files is
more concerned with the delay. Therefore, it is a multi-dimensional
decision to determine the most suitable CDN server. In addition,
single resource type-based methods would cause unequal server
allocations, resulting in “hot zones” and resource idleness. Such
ineffective resource allocation further significantly increases the
cost of service providers.

In this paper, we propose Polygon, a CDN server selection sys-
tem supporting multiple resource demands while still benefiting
from the advantages of anycast. The keystone of Polygon is the de-
ployment of a set of dispatchers at strategic network locations. The
dispatchers are responsible for resource status collection, server
assignment with resource demands, and forwarding requests to
suitable CDN servers. A dispatcher periodically collects resource
status. Once receives the clients’ requests, the dispatcher selects the
appropriate servers based on the resource demands and the latest
resource status. The introduction of the dispatchers will bring some
additional overhead, especially extra delays for connecting and
forwarding. To mitigate the side-effect, Polygon adopts Quick UDP
Internet Connections (QUIC) [16, 21], a promising transmission

https://doi.org/10.1145/3491084.3491428
https://doi.org/10.1145/3491084.3491428
https://doi.org/10.1145/3491084.3491428

Middleware Industry ’21, December 6–10, 2021, Virtual Event, Canada Zhou et al.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Waiting Time

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Twitter.com
YouTube.com
Microsoftonline.com

(a) The ratio of waiting time

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Download Time

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Twitter.com
YouTube.com
Microsoftonline.com

(b) The ratio of download time

Figure 1: The cumulative distribution functions of the ratios ofwait-
ing time and download time

protocol to achieve a low latency handshake and support connec-
tion migration. The 0-RTT [14] handshake feature of QUIC assists
in establishing fast connections from the client to the dispatcher.
Additionally, QUIC eliminates the re-connection process between
the client and the server with connection migration features. The
evaluation results show that the deployment of the dispatchers
enables Polygon to achieve a better CDN service with a median job
completion time reduction of up to 54.8%. Our contributions are
summarized as follows:

• We introduce a motivating case study to demonstrate that in
different application scenarios, users would have different
resource type priorities when selecting CDN servers. We aim
to support delay-sensitive, bandwidth-sensitive, and CPU-
sensitive CDN server requests with an integrated solution.

• We propose Polygon, a QUIC-based CDN server selection
system supporting multiple types of resource demands. Poly-
gon also leverages the advantages of QUIC to tackle the extra
delay and overhead caused by introducing the dispatchers.

• We conduct an evaluation of the real-world deployment on
the Google Cloud Platform. The experimental results show
that Polygon provides better CDN services with a median
job completion time reduction of up to 54.8%. Polygon also
improves resource utilization efficiency by 13% in terms of
bandwidth and by 7% in terms of CPU.

2 MOTIVATING CASE STUDY
CDNs have been deployed for many years and support several
content types, including web contents [40], video streaming [29]
and replica databases [18, 41]. Generally, different types of CDN
requests reveal distinct resource demands. Here, we introduce a case
study to investigate the different CDN request patterns on three
typical websites and verify that different requests are sensitive to
different resource types.
Three Types of CDN Request Patterns. Three typical websites
Twitter.com, YouTube.com and Microsoftonline.com are cho-
sen as cases, all of which have millions of users worldwide [15]
and rely heavily on global CDN infrastructure [36]. We treat each
requested file recorded by Chrome-HAR [7] as a CDN request. We
study the ratios of waiting time and download time of CDN request
completion time, respectively. In Fig. 1, we plot the cumulative dis-
tribution functions of the ratios of waiting time and download time
on three websites. We notice that for Microsoftonline.com, more
than 60% of the requests with ratios of waiting time more than 0.8.

Sensitivity
Metric

Service
Quality Level RTT Bandwidth CPU

RTT
Poor 131 ms 248 Mb/s 1 standard vCPU
Medium 112 ms 214 Mb/s 1 standard vCPU
Good 96 ms 184 Mb/s 1 standard vCPU

Bandwidth
Poor 51 ms 3 Mb/s 1 standard vCPU
Medium 34 ms 248 Mb/s 1 standard vCPU
Good 11 ms 758 Mb/s 1 standard vCPU

CPU
Poor 27 ms 917 Mb/s 1 shared vCPU
Medium 27 ms 917 Mb/s 1 standard vCPU
Good 27 ms 917 Mb/s 4 standard vCPU

Table 1: The detailed server configurations on the testbed

While Twitter.com and YouTube.com have fewer requests with
such ratios of waiting time. Comparatively, the ratios of download
time of the requests on Microsoftonline.com are shorter than
those on Twitter.com and YouTube.com.

The above case study shows that the ratios of waiting time and
download time for completing each request for the three typical
web services are quite different. According to this phenomenon,
we intuitively assume that CDN content requests have different
sensitivity priorities to different resource types in different applica-
tion scenarios. By carefully considering a set of classic application
scenarios, we divide CDN content requests into three categories
that are sensitive to different resource types, i.e., delay, bandwidth,
and CPU capability.

• Delay-Sensitive requests are sensitive to network delay.
This type of sensitivity generally occurs in web browsing,
which needs to fetch a number of small-size contents from
web pages.

• Bandwidth-Sensitive requests are sensitive to available
bandwidth. This type of sensitivity is highly related to con-
tent downloads, which includes downloading large files and
video streaming.

• CPU-Sensitive requests are sensitive to CPU capability.
This type of sensitivity often occurs in computing tasks,
mainly for database queries, which require high I/O and
intensive computation.

Sensitivity to Different Recourse Types. We design a test on
the Google Cloud Platform to verify that the three CDN requests
are sensitive to different resource types. We use “poor”, “medium”,
and “good” to represent the servers’ various service quality levels of
delay, bandwidth, and CPU. Specifically, we use Round-Trip Time
(RTT) to quantify the network delay. The detailed server configura-
tions are listed in Table 1. Then we use the same client to succes-
sively make the following three types of requests to these servers.
For delay-sensitive requests, we crawl the frontpages of Alexa Top
500 Sites for our study and generate visits to these crawled web-
pages. For bandwidth-sensitive requests, we use a video with a size
of 5MB to generate a media CDN request and visit it for 10 times.
For CPU-sensitive requests, we perform 100 random queries in a
database with one million entries as computational requests.

We record the job completion time (JCT) of the above three re-
quests on each server listed in Table 1. JCT is defined as the time to
complete a CDN request task. The results in Fig. 2 demonstrate that
there are obvious differences in the sensitivity of the three types of

Polygon: A QUIC-Based CDN Server Selection System Supporting Multiple Resource Demands Middleware Industry ’21, December 6–10, 2021, Virtual Event, Canada

Poor Medium Good
Service Quality Level

0.0

0.5

1.0

A
vg

. J
C

T

Delay BW CPU

(a) Delay-sensitive

Poor Medium Good
Service Quality Level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
vg

. J
C

T

Delay BW CPU

(b) Bandwidth-sensitive

Poor Medium Good
Service Quality Level

0
1
2
3
4
5
6
7
8

A
vg

. J
C

T

Delay BW CPU

(c) CPU-sensitive

Figure 2: The average JCT of the three CDN request types

CDN requests to different resource types. Fig. 2(a) shows that with
the increase of the delay service quality level, the average JCT of
delay-sensitive requests reduces significantly. However, it does not
change much with the fluctuation of other resources. Similarly, in
Fig. 2(b) and Fig. 2(c), the average JCT values of bandwidth-sensitive
and CPU-sensitive requests rapidly decline with the upgrade of the
capability of corresponding resource types. In comparison, the aver-
age JCT is relatively stable with changes in the irrelevant resource
types. Therefore, to achieve a better CDN service performance, we
need to consider different resource types jointly instead of a single
resource type.

3 DESIGN FOR POLYGON
In this section, we present the design of our proposal, Polygon,
a CDN server selection system supporting multiple resource de-
mands. First, we present the overall workflow of our architecture
(§3.1). Subsequently, we list some practical challenges in imple-
menting our system (§3.2). Furthermore, we introduce how we
address each practical challenge, including resource status collec-
tion (§3.3), server assignment with resource demands (§3.4), and
request forwarding to realize content transmission (§3.5).

3.1 Design Overview
Inspired by our findings in §2, it is promising to build a CDN server
selection system by considering the demands of multiple resource
types jointly. We believe it will be more useful than existing CDN
server selection schemes, which only consider the topological close-
ness of the Internet [2, 8, 23]. We propose Polygon, a QUIC-based
CDN server selection system supporting multiple types of resource
demands. Similar to [22], we deploy a set of dispatchers in the net-
work, which are responsible for resource status collection, server as-
signment with resource demands, and forwarding clients’ requests
to the suitable CDN servers. As shown in Fig. 3, the workflow of
Polygon is as follows:
Step 1: CollectingReal-TimeResource Status. To allocate CDN
servers based on resource demands, Polygon needs to periodically
collect resource status and store them in dispatchers. For the re-
source status related to the network, e.g., delay and bandwidth,
Polygon estimates the status in an aggregative way. By dividing
the Internet into several regions, Polygon deploys a dispatcher in
each region and obtains the representative network status by the
measurement between the server and the dispatcher. For other re-
sources, such as the CPU capability, servers directly send the status
to the dispatcher. (§3.3)

Anycast
Routing

Unicast
Information Update

Client

Dispatcher

① Record

Information
Optimal
Server

Anycast
Request Forward

③ Forward Request

③
Fo
rw
ar
d
R
eq
ue
st

Second Optimal
Server

Overlay
Network

④Arrive First.
Establish Unicast Connection

④Arrive Later
Abort

② Send Request

Request Type = 0
CPU 100%

Metadata

Dispatcher

③ Forward Request

① Record
Information

…

Figure 3: The workflow of Polygon for CDN server assignment

Step 2: Sending Request and Selecting Server. Then, the client
sends the request with the resource demands and waits for the
CDN server assignment. Polygon supports both the pre-defined
classic resource compositions and customizable demand weights
with the metadata block in QUIC. Moreover, to handle the failed
responses, Polygon introduces a Demand Restriction Allocation
(DRA) algorithm with the redundant forwarding mechanism when
assigning suitable CDN servers (§3.4).
Step 3: Forwarding Request to Suitable Server. Polygonmakes
use of the advantages of QUIC to avoid unnecessary delay. In §3.5,
we take the 0-RTT handshake feature in QUIC to establish fast con-
nections. Furthermore, we build an overlay network to ensure quick
forwarding among dispatchers, and eliminate re-connection delay
between a client and a server by leveraging connection migration
features of QUIC.
Step 4: Establishing Unicast Connection and Content Trans-
mission. Considering the unicast connection can achieve a more
stable content transmission than the anycast connection [1], Poly-
gon will establish a unicast connection between client and server
based on the unicast server address in the response packet.

3.2 Practical Challenges
However, there are several practical challenges as follows when
implementing Polygon.
Diversity of Resource Status. Server-client node pairs are nu-
merous on the Internet, and it is impossible to measure the end-to-
end links between all these pairs in a reasonable time frame. Also,
given the dynamic of the Internet, the resource status may be quite
different between adjacent moments. Therefore, it is impossible for
the CDN selection system to measure and record the resource status
of all server-client pairs using only one round of measurement.
Effective Demand Delivery and Selection Algorithm. Since
Polygon will support both classic resource demands and customiz-
able resource demands, we are faced with the design challenge of
realizing these two functions effectively. Concomitantly, the CDN
allocation algorithm should be flexible under multiple resource
types and robust with dynamic network environments.
Extra Delay for Connecting and Forwarding. In Polygon, the
connection establishment between a client and a server has two
steps. A dispatcher needs to perform a CDN assignment first. Then
the client establishes another connection with the selected CDN
server, which will cause extra connection delay. Reducing the extra

Middleware Industry ’21, December 6–10, 2021, Virtual Event, Canada Zhou et al.

connection delay is the key to keeping the advantages of our CDN
selection system.

3.3 Collection of Resource Status
As mentioned before, the biggest problem of collecting resource
status is the diversity of different server-client pairs. To solve this
problem, we obtain the information of network resources between
the clients and the servers in an aggregative way.

We deploy Polygon globally. There is one dispatcher for resource
status collection in each region. We can define a region as a geo-
graphically adjacent area (e.g., a state, province, or city) or a net-
work zone (e.g., an autonomous system). In this paper, we consider
three representative service resource types when requesting CDN
contents, i.e., delay, bandwidth, and CPU capability.
Delay. Hosts that are geographically close will have similar net-
work environments [24]. Network delay is highly correlated with
the link hops and geographic distance [5]. Since Polygon deploys a
series of dispatchers to collect the resource status worldwide, we
can leverage the dispatcher in each region as the representative
agent to provide the network delay measurement. As in Table 1,
we use RTT to quantify the network delay. The RTT is obtained
by Ping [28]. Polygon will record the RTT between every server-
dispatcher pair by conducting probing every hour since the RTT is
relatively stable. The results are stored by MySQL Database.
Bandwidth is also a type of network resource strongly related to
geographic location because cross-region bandwidth is much more
scarce than the intra-region bandwidth (5-20× lower) [34]. Similar to
the RTT measurement, we use the dispatcher in each region as the
representative agent to estimate the available bandwidth. We use
the method proposed in [35] to measure the available bandwidth.
However, bandwidth measurement needs to transmit more data
than measuring the delay. Taking into account both the timeliness
and overhead of the measurement, we set 1.5 seconds as the interval
to measure the available bandwidth and store it in Redis Database.
CPU Capability is a type of resource that can be measured by
the server itself. We obtain the available CPU capability by the
calculation of idle rate × number of CPU cores × CPU clock frequency.
Similar to bandwidth consideration, the measurement duration of
the CPU is set at 1.5 seconds. The measurement results are stored
by Redis Database.

3.4 Metadata and Server Selection Algorithm
After collecting real-time resource status, another challenge is how
to attach the resource demand to the data packet and design a robust
selection algorithm. Polygon provides both the pre-defined classic
resource compositions and customizable demand weights with the
metadata block in QUIC. We also implement a DRA algorithm with
redundant forwarding to handle the single point of failure.
Metadata in QUIC. In QUIC, there is an extended metadata block
at the handshake packet that can be customized [16]. We append
the specific resource demands with the metadata, and the structure
of metadata is shown in Fig. 4. The metadata can be divided into
three parts: the requested resource composition, the specific CDN
resource request flag, and the weight of each resource type demand.

For the requested resource composition part, we pre-define a
set of resource compositions by assigning each type a positive

Requested Resource Composition ID (16 bits)

Flag 1 (1 bit) … Flag 8 (1 bit) Flag 9 (1 bit) … Flag 16 (1 bit)

Res_1 Weight (8 bits) Res_2 Weight (8 bits)

… …

… Res_16 Weight (8 bits)

M
et
ad
at
a

H
an
ds
ha
ke
Pa
ck
et

Figure 4: The design of metadata in QUIC. The metadata not only
provides pre-defined classic resource compositions, but also allows
a client to set customizable demand weights.

integer. For each resource composition, we pre-define the demand
of different resource types. Each classic resource composition (e.g.,
bandwidth-sensitive file downloading) has been pre-configured,
and the dispatchers are aware of the detailed demand of different
resource types.

We also allow a client to have customized resource demands. To
achieve this, the requested resource composition ID should be set as
0. In addition, we apply a 16-bit flag field and a 128-bit weight field
to specify detailed resource demands. Each bit of the 16-bit flag field
corresponds to a given resource type, and therefore this flag field
can cover the commonly used resource types. For each demand,
we use 8 bits as the weight of each resource type. Considering the
transmission efficiency, the client just transmits the weight block
of the resource type with the TRUE flag. The dispatcher can decode
the weight information according to the binary information of the
flag in the metadata block.
Demand Restriction Allocation (DRA) Algorithm. The core
of the DRA algorithm is the server resource scoring operation. For
each candidate server, we calculate the server score according to the
resource flags and corresponding weights from metadata. A larger
server score indicates that this server is more suitable to serve the
request. Two aspects determine the server score. The first part is the
amount of currently available resources, the most intuitive metric
indicating the availability. The second part is calculated based on
the maximum capability of resources since more powerful resource
could provide better services. We calculate the sum of the weights
of existing connections and the weight of the to-be-established
connection. Then the maximum capability of the resource is divided
by this sum to obtain the average availability. For each type of
resource, we add the scores of the two aspects, and then multiply
it by the weight of the corresponding resource type. Finally, the
complete server score is the cumulative value of each resource
score.
Redundant Forwarding. To avoid the assignmentmistakes caused
by potential sharp capacity degradation of the optimal node, we
introduce a redundant forwarding mechanism. Ideally, Polygon
will pick up both the optimal and the second optimal servers ac-
cording to the server scores and forward requests to both of them.
In practice, only when the second optimal server’s score is 10%
less than the optimal server’s and the RTT value is shorter than
30ms, we will trigger the redundant forwarding, which avoids the
disadvantages caused by the second optimal server.

Owing to redundant forwarding, the client might receive two
servers’ responses successively. The client will only respond to the
first received response and establish a unicast connection with the
corresponding server, while discarding another server’s response.

Polygon: A QUIC-Based CDN Server Selection System Supporting Multiple Resource Demands Middleware Industry ’21, December 6–10, 2021, Virtual Event, Canada

3.5 Request Forwarding by Dispatchers
The extra delay introduced by Polygon includes the delay of reach-
ing the dispatcher, request forwarding, and re-establishing the con-
nection between the client and the CDN server. The key to main-
taining the advantages of the CDN selection system is to eliminate
these delays.

Polygon makes use of the advantages of QUIC to solve this prob-
lem. QUIC is proposed on top of UDP to enhance the efficiency
of data transmission [21]. Compared with TCP, QUIC introduces
many new features. For example, it achieves a lower latency hand-
shake with 1-RTT and 0-RTT, and supports connection migration
to transfer from one server to another smoothly.
Zero-LatencyConnectionEstablishment toDispatchers. Poly-
gon uses anycast to access the nearest dispatcher and leverages
the 0-RTT feature of QUIC to reduce the handshake delay. When
the client has ever connected to the dispatcher, the shared key
between the client and the dispatcher will be kept, and this key
will be reused in the next connection. In other words, the client
can directly transmit the contents without the handshake process,
which is known as the 0-RTT handshake. Frequent interactions
between the client and the dispatcher provide an opportunity for
the 0-RTT handshake, which vastly decreases the connection time.
Fast Forwarding via Overlay Network. The forwarding delay
is acceptable for the servers that reside in the same region of a
dispatcher since they are close to each other and the intra-region
delay is short. However, there are some situations where we need
to forward requests to servers in other regions, which will result in
high delays [37]. Therefore, we construct a fast-forwarding over-
lay network [22, 33] to connect the dispatchers. Via this overlay
network, data packets can quickly reach another region through a
GRE tunnel [10]. Then the packets will be sent to the final server
in the same region through low-latency forwarding.
Eliminating Re-Connection between Client and Server. Fi-
nally, Polygon leverages the connection migration function in QUIC
to eliminate the re-connection operation between the client and
the server. Connection migration realizes an unconscious transfer
from one node to another. Universally Unique Identifier (UUID),
as a unique identifier of the connection instead of a 5-tuple in
QUIC, guarantees the feasibility of the continuous connection even
when the IP address changes. Therefore, the server can continue
the subsequent data transmission instead of re-establishing a new
connection.

The serverwill append its unicast address in the preferred_address
(0𝑥000𝑑) block of the handshake response packet. In this way, when
the client receives the response packet, the client can directly es-
tablish the subsequent unicast connection with the unicast address.
With connection migration, Polygon can accomplish sending re-
quests, forwarding requests, and establishing data transmission
connections through only one QUIC connection, which greatly
reduces the delay.

4 EVALUATION
In this section, we introduce our evaluation and advantages of
Polygon in terms of JCT and resource utilization efficiency.
Baselines. We select three representative CDN server allocation
systems as the baselines and compare Polygon with them. The

Average Median
0

10

20

30

40

50

60

Jo
b
 C

o
m

p
le

ti
o
n
 T

im
e

DNS-based

PureAnycast

FastRoutet

Polygon

(a) The average andmedian values of
job completion time

Delay Bandwidth CPU
0

20

40

60

80

100

120

A
v
g
.
Jo

b
 C

o
m

p
le

ti
o
n
 T

im
e

DNS-based

PureAnycast

FastRoute

Polygon

(b) The average JCT of requests sensi-
tive to different resource types

Figure 5: The JCT performance comparison

first is the widely used DNS-based CDN selection system [30],
which has been applied by mainstream CDNs such as Akamai. The
rest two are both built on the anycast routing mechanism. One
is PureAnycast [4], a naive anycast CDN selection system, and
the other is FastRoute [11], a CDN selection adopted by Bing [6].
FastRoute arranges CDN servers in hierarchical anycast layers
for offloading traffic under heavy load. To avoid bias by adopting
different transmission protocols, we implement the baselines with
the QUIC protocol. Thus we could ensure a fair comparison.
Evaluation Configuration. We evaluate the three baselines and
Polygon on the Google Cloud Platform. We create five CDN servers
located in five continents, i.e., Asia, Australia, Europe, North Amer-
ica, and South America. To implement Polygon, we deploy one
dispatcher in each continent. In particular, FastRoute needs to build
a virtual hierarchical architecture. We select the servers located in
Asia, Europe, and North America to form the outer layer and the
servers in Australia and South America to constitute the standby
servers in the inner layer. The anycast IP address is provided by
the load balancing service on the Google Cloud Platform [25]. The
clients are deployed on virtual machines in 10 Google Cloud data
centers. Each client executes ten processes simultaneously to emu-
late a group of clients. We arrange three clients in Asia, three clients
in North America, two clients in Europe, one client in Australia, and
one client in South America. We construct the evaluated requests
by randomly selecting the three types of requests in §2 with the
ratio of 4:4:1. All machines (including clients, servers, dispatchers)
share the same machine setting, i.e., any of which runs Ubuntu
18.04 LTS and is configured with one standard vCPU and 3.75 GB
memory.
Less Job Completion Time. Job completion time is a key metric
for measuring the performance of CDN content fetching [19, 39].
JCT is defined as the time to complete a CDN request task. In Fig.
5(a), we plot the average and median values of JCT of the four
systems. It can be found that Polygon outperforms all baseline
schemes and achieves less JCT in terms of either the average or
median value. Polygon has a 29.3% reduction in average JCT com-
pared with FastRoute, and 5.8% from the DNS-based scheme. For
the median JCT, Polygon has a 54.8% reduction from PureAnycast
and a 3.1% reduction from the DNS-based scheme.

Further, in Fig. 5(b), we investigate what types of requests pro-
mote Polygon’s advantages. Polygon achieves a smaller JCT value
for each type of request. Especially for bandwidth-sensitive re-
quests, Polygon displays a 55.4% reduction, i.e., about 71.4 ms

Middleware Industry ’21, December 6–10, 2021, Virtual Event, Canada Zhou et al.

Method # BW Req. BW Cost
/ # BW Req. # CPU Req. CPU Cost

/ # CPU Req.
DNS-based 1570 7.04 421 0.74
PureAnycast 1915 6.31 576 0.60
FastRoute 497 12.56 380 0.90
Polygon 2166 4.71 619 0.49

Table 2: The number of requests completed and the resource cost of
each request. BW is an abbreviation for bandwidth.

shorter compared with the PureAnycast scheme. Polygon achieves
such improvement by assisting the client in getting rid of crowded
servers and flexibly choosing the CDN server that matches the
client’s resource needs in other regions. 64% of CPU-sensitive re-
quests and 34% of bandwidth-sensitive requests are redirected to
other regions. When a nearby CDN server reaches its capacity,
Polygon forwards the request to other less crowded servers to im-
prove file transmission efficiency. Meanwhile, since subsequent
requests are offloaded to other regions, the performance of the
existing tasks would not be further downgraded. Overall, Polygon
effectively serves the users with different resource demands by
considering different types of resources together.
Higher Resource Utilization Efficiency. In addition to reducing
the JCT, Polygon can also improve the overall resource utilization
efficiency on the server-side and further cut down the cost for
service providers [26]. In Table 2, we list the number of requests
completed in the same 2 hours and the resource cost to complete per
request [29]. For example, the CPU resource cost for each request
is calculated by dividing the CPU usage on all links by the number
of requests. The calculation method for the bandwidth resource
is similar. Polygon outperforms baselines for both CPU-sensitive
requests and bandwidth-sensitive requests. Compared with the sub-
optimal PureAnycast, Polygon increases the bandwidth-sensitive
requests throughput by 13% and decreases the cost by 25%. While
the CPU-sensitive request throughput is lifted by 7%, and the cost
is reduced by 18%. By forwarding the crowded regions’ requests,
Polygon makes better use of the unoccupied servers and alleviates
the resource preemption in these crowded regions. Due to the un-
balanced global traffic distribution [17], the DNS-based scheme and
PureAnycast cannot respond quickly with the limited resources
of crowded regions, resulting in fewer completed requests. In par-
ticular, the FastRoute scheme performs worse than other schemes
since all requests are concentrated on a few servers owing to its
layer-by-layer activation structure.

5 RELATEDWORK
Anycast-Based CDN. Anycast is a classic technology used in
modern CDNs. It is naturally suitable for large-scale Internet con-
tent delivery since it matches the core idea of CDN, which is to
place resources on nodes near users. Flavel et al. [11] proposed Fas-
tRoute built on anycast to allow users to access the closest services.
They deployed FastRoute on the Bing search engine and conducted
a large-scale performance measurement [6]. However, they found
that although anycast shows good performance for CDN server
selection, there existed the problem of control loss [23] that Fas-
tRoute guides approximately 20% of requests to a second optimal

CDN endpoint. For this problem, Alzoubi et al. [2, 3] presented a
load-aware anycast CDN architecture by using server and network
load feedback to control the CDN server redirection. Fu et al. [12]
proposed T-SAC to achieve a precise control for fine-grained traffic
using a single 1-bit non-redirection flag. In addition, to solve the
possible connection interruption problem with anycast, Lai and
Fu [20] suggested to direct the anycast traffic to their in-the-middle
MIMA nodes and convert anycast CDN target addresses to unicast
addresses.
Load Balancing. Load balancing is a critical component in vari-
ous Internet-scale distributed systems. Ananta [32] was introduced
by Patel et al. in 2013, and Eisenbud et al. proposed Maglev [9]
in 2016. These two load balancing systems are deployed on the
large-scale infrastructure of Microsoft and Google, respectively.
Apart from traffic-aware load balancing studies, there were some
load balancing work for other considerations. Considering the huge
energy consumption, Mathew et al. [26] took energy optimization
as the primary principle and designed an energy-aware optimiza-
tion algorithm. Zhang et al. [38] proposed a load balancing scheme
for scenarios under uncertainties and achieved a significant im-
provement when the switches occasionally failed. Miao et al. [27]
leveraged switching ASICs to build faster load balancers, which
were able to handle 10 million connections simultaneously. While
Gandhi et al. [13] embedded the load balancing function into hard-
ware switches, which had 10 times more capacity and 10 times less
latency than software-based solutions.

6 CONCLUSION
In this paper, we propose Polygon, a CDN server selection system
supporting multiple types of resource demands by leveraging the
advantages of both QUIC and anycast. With the help of a set of
in-network dispatchers, Polygon can select suitable CDN servers
based on the resource demand and resource availability. Owing to
the 0-RTT and connection migration features of QUIC, Polygon can
establish fast connections from a client to a dispatcher and elimi-
nate the re-connection process between a pair of client and server.
Furthermore, to mitigate the request forwarding delay across dif-
ferent regions, Polygon realizes quick forwarding by building an
overlay network between the dispatchers. Our evaluation shows
that Polygon reduces the median JCT by up to 54.8% compared with
the baseline schemes. Additionally, Polygon reduces resource idle-
ness and achieves more effective resource utilization by forwarding
the requests across different regions.

In the future, we plan to have a wider range of practical deploy-
ment of Polygon, and conduct more comprehensive measurement
studies. Meanwhile, we will further explore and address the po-
tential scalability and dynamic challenges of applying Polygon in
different kinds of large-scale real-world network applications.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (No. 61971145) and the HUAWEI research collaboration
YBN2019125184. Yang Chen is the corresponding author.

Polygon: A QUIC-Based CDN Server Selection System Supporting Multiple Resource Demands Middleware Industry ’21, December 6–10, 2021, Virtual Event, Canada

REFERENCES
[1] Zakaria Al-Qudah, Seungjoon Lee, Michael Rabinovich, Oliver Spatscheck, and

Jacobus Van Der Merwe. 2009. Anycast-aware transport for content delivery
networks. In Proc. of WWW.

[2] Hussein A. Alzoubi, Seungjoon Lee, Michael Rabinovich, Oliver Spatscheck, and
Jacobus Van Der Merwe. 2011. A Practical Architecture for an Anycast CDN.
ACM Transactions on the Web 5, 4 (2011), 1–29.

[3] Hussein A. Alzoubi, Lee Seungjoon, Michael Rabinovich, Oliver Spatscheck, and
Jacobus Van Der Merwe. 2008. Anycast CDNs revisited. In Proc. of WWW.

[4] Abbie Barbir, Brad Cain, Raj Nair, and Oliver Spatscheck. 2003. Known content
network (CN) request-routingmechanisms. RFC 3568. Available: https://www.rfc-
editor.org/rfc/rfc3568.html. Accessed: 2021-10-10.

[5] CJ Bovy, HT Mertodimedjo, Gerard Hooghiemstra, Henk Uijterwaal, and Piet
Van Mieghem. 2002. Analysis of end-to-end delay measurements in Internet. In
Proc. of the PAM.

[6] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the performance of an anycast CDN. In Proc. of IMC.

[7] Andrea Cardaci. 2017. Chrome HAR Capturer. https://github.com/cyrus-and/
chrome-har-capturer. Accessed: 2021-10-10.

[8] Danilo Cicalese, Jordan Augé, Diana Joumblatt, Timur Friedman, and Dario Rossi.
2015. Characterizing IPv4 anycast adoption and deployment. In Proc. of CoNEXT.

[9] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A fast and reliable software network load
balancer. In Proc. of NSDI.

[10] Dino Farinacci, Tony Li, Stan Hanks, David Meyer, and Paul Traina. 2000. Generic
routing encapsulation (GRE). RFC 2784. Available: https://www.rfc-editor.org/
rfc/rfc2784.html. Accessed: 2021-10-10.

[11] Ashley Flavel, Pradeepkumar Mani, David A. Maltz, Nick Holt, Jie Liu, Yingying
Chen, and Oleg Surmachev. 2015. FastRoute: A scalable load-aware anycast
routing architecture for modern CDNs. In Proc. of NSDI.

[12] Qiang Fu, Bradley Rutter, Hao Li, Peng Zhang, Chengchen Hu, Tian Pan,
Zhangqin Huang, and Yibin Hou. 2018. Taming the Wild: A Scalable Anycast-
Based CDN Architecture (T-SAC). IEEE Journal on Selected Areas in Communica-
tions 36, 12 (2018), 2757–2774.

[13] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra Padhye,
Lihua Yuan, and Ming Zhang. 2015. Duet: Cloud scale load balancing with
hardware and software. Computer Communication Review 44, 4 (2015), 27–38.

[14] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 2017. 0-RTT key
exchange with full forward secrecy. In Proc. of Eurocrypt.

[15] Alexa Internet. 2021. The top 500 sites on the web. https://www.alexa.com/
topsites. Accessed: 2021-10-10.

[16] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-based multiplexed and
secure transport. RFC 9000. Available: https://www.rfc-editor.org/rfc/rfc9000.
html. Accessed: 2021-10-10.

[17] Anish Jindal, Gagangeet Singh Aujla, Neeraj Kumar, Rajat Chaudhary, Moham-
mad S Obaidat, and Ilsun You. 2018. SeDaTiVe: SDN-enabled deep learning
architecture for network traffic control in vehicular cyber-physical systems. IEEE
Network 32, 6 (2018), 66–73.

[18] Nattiya Khaitiyakun and Teerapat Sanguankotchakorn. 2014. An analysis of data
dissemination on VANET by using content delivery network (CDN) technique.
In Proc. of AINTEC.

[19] Fan Lai, Jie You, Xiangfeng Zhu, Harsha VMadhyastha, Implementation Nsdi, Fan
Lai, Jie You, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury.
2020. Sol: Fast Distributed Computation Over Slow Networks. In Proc. of NSDI.

[20] Jeffrey Lai and Qiang Fu. 2016. Man-In-the-Middle Anycast (MIMA): CDN User-
Server Assignment Becomes Flexible. In Proc. of LCN.

[21] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The QUIC Transport Protocol: Design and Internet-scale Deployment. In Proc. of
SIGCOMM.

[22] Xuebing Li, Bingyang Liu, Yang Chen, Yu Xiao, Jiaxin Tang, and Xin Wang. 2019.
Artemis: A practical low-latency naming and routing system. In Proc. of ICPP.

[23] Zhihao Li, Neil Spring, Dave Levin, and Bobby Bhattacharjee. 2018. Internet
anycast: Performance, problems, & potential. In Proc. of SIGCOMM.

[24] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.
2013. Stronger semantics for low-latency geo-replicated storage. In Proc. of NSDI.

[25] Google Co., Ltd. 2021. Google Cloud Load Balancing. Available: https://cloud.
google.com/load-balancing. Accessed: 2021-10-10.

[26] Vimal Mathew, Ramesh K. Sitaraman, and Prashant Shenoy. 2012. Energy-aware
load balancing in content delivery networks. In Proc. of INFOCOM.

[27] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making stateful layer-4 load balancing fast and cheap using switching
ASICs. In Proc. of SIGCOMM.

[28] David L. Mills. 1983. Internet delay experiments. RFC 0889. Available: https:
//www.rfc-editor.org/rfc/rfc0889.html. Accessed: 2021-10-10.

[29] Matthew K. Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan
Seshan, and Hui Zhang. 2015. Practical, Real-time Centralized Control for CDN-
based Live Video Delivery. In Proc. of SIGCOMM.

[30] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The Akamai network:
a platform for high-performance internet applications. ACM SIGOPS Operating
Systems Review 44, 3 (2010), 2–19.

[31] Craig Partridge, Trevor Mendez, and Walter Milliken. 1993. Host anycasting ser-
vice. RFC 1546. Available: https://www.rfc-editor.org/rfc/rfc1546.html. Accessed:
2021-10-10.

[32] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-
berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud scale load balancing. In
Proc. of SIGCOMM.

[33] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Joe Stringer, and Pravin Shelar. 2015. The design
and implementation of Open vSwitch. In Proc. of NSDI.

[34] Zhirong Shen and Patrick PC Lee. 2018. Cross-rack-aware updates in erasure-
coded data centers. In Proc. of ICPP.

[35] Jacob Strauss, Dina Katabi, and Frans Kaashoek. 2003. A Measurement Study of
Available Bandwidth Estimation Tools. In Proc. of IMC.

[36] Ruben Torres, Alessandro Finamore, Jin Ryong Kim, Marco Mellia, Maurizio M.
Munafò, and Sanjay Rao. 2011. Dissecting video server selection strategies in the
YouTube CDN. In Proc. of ICDCS.

[37] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu, and Lei
Cui. 2019. Congestion control for cross-datacenter networks. In Proc. of ICNP.

[38] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury. 2017.
Resilient datacenter load balancing in the wild. In Proc. of SIGCOMM.

[39] Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Miao
Zhang, and Yang Yue. 2021. WiseTrans: Adaptive Transport Protocol Selection
for Mobile Web Service. In Proc. of WWW.

[40] Liang Zhang, Fangfei Zhou, Alan Mislove, and Ravi Sundaram. 2013. Maygh:
Building a CDN from client web browsers. In Proc. of EuroSys.

[41] Wei Zhang, Zhihui Lu, Ziyan Wu, Jie Wu, Huanying Zou, and Shalin Huang.
2018. Toy-IoT-Oriented data-driven CDN performance evaluation model with
deep learning. Journal of Systems Architecture 88 (2018), 13–22.

https://www.rfc-editor.org/rfc/rfc3568.html
https://www.rfc-editor.org/rfc/rfc3568.html
https://github.com/cyrus-and/chrome-har-capturer
https://github.com/cyrus-and/chrome-har-capturer
https://www.rfc-editor.org/rfc/rfc2784.html
https://www.rfc-editor.org/rfc/rfc2784.html
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.rfc-editor.org/rfc/rfc9000.html
https://cloud.google.com/load-balancing
https://cloud.google.com/load-balancing
https://www.rfc-editor.org/rfc/rfc0889.html
https://www.rfc-editor.org/rfc/rfc0889.html
https://www.rfc-editor.org/rfc/rfc1546.html

	Abstract
	1 Introduction
	2 Motivating Case Study
	3 Design for Polygon
	3.1 Design Overview
	3.2 Practical Challenges
	3.3 Collection of Resource Status
	3.4 Metadata and Server Selection Algorithm
	3.5 Request Forwarding by Dispatchers

	4 Evaluation
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

