
Polygon:
A QUIC-Based CDN Server Selection System
Supporting Multiple Resource Demands

Mengying Zhou, Tiancheng Guo, Yang Chen, Junjie Wan, Xin Wang

1

22nd ACM/IFIP International Middleware Conference, Industrial Track (Middleware Industry'21)

2

Everybody Uses CDNs

Origin server

3 seconds

End user

1s

CDNs (Content Delivery Networks) are designed to
speed up loading times for websites by caching a
version of a site’s content in multiple
geographical locations

Is the smallest geographic distance enough?

- A: 100Mbps, 150ms
- B: 1Gbps, 40ms
- C: 100Mbps, 90ms

- 1000 requests/s

3

The Usefulness of Bandwidth

CDN server Client

• According to the geographic distance, the CDN requests
from North America will be ALL direct to Server B

Server B

Server A

Server C

• Two content types in the CDN requests:
A epic NBA moment video:
- large size (15M), in the end of the browsing queue

A widely used JavaScript library:
- small size (200K), in the front of the browsing queue

Avg. Job
Completion Time:

• Video requests are prioritized for bandwidth, not latency.
If we redirect 20% of video requests to Server A / Server C:

Avg. Job
Completion Time:

Redirected

Redirected

Server A: 256.7 s
Server B: 265.2 s ↓
Server C: 242.8 s
1.1 s ↓Bandwidth also matters for CDN selection

273.3 s

2.2 s
Exceed Load
especially bandwidth

Types of requests sensitive to three common resource types
• Delay-sensitive (e.g. JavaScript file)
• Bandwidth-sensitive (e.g. video)
• CPU-sensitive (e.g. database query)

Finding: each resource shows the most significant influence
on its corresponding type of requests.

4

Delay, Bandwidth, and CPU All Matter

Considering resource priorities of different requests
is necessary when selecting CDN servers

Priorities of Request 1st 2nd 3rd

Delay-sensitive Delay Bandwidth CPU

Bandwidth-sensitive Bandwidth Delay CPU

CPU-sensitive CPU Delay Bandwidth

1. Centralized router manager considering the concurrent
request load [Alzoubi et al., TWEB’11]

2. FastRoute [Flavel et al., NSDI’15]
• Offloading traffic to other nodes by editing the DNS resolvers

• Applied in Bing search engine [Calder et al., IMC’15]

5

How Previous Solutions?

Shortcomings

They treat the resource priority of different types
of requests as the same

They are based on Anycast routing, which
loses precise control over CDN server selection

6

1. Resource status collection

2. Server assignment with
multiple resource demands

3. Forwarding requests to
suitable CDN servers at a
small cost

Polygon:
A QUIC-Based CDN Server Selection System
Supporting Multiple Resource Demands

A set of dispatchers at strategic network locations:

7

Polygon Workflow

Anycast
Routing

Unicast
Information Update

Client

Dispatcher

① Record

Information
Optimal
Server

Anycast
Request Forward

③ Forward Request

Second Optimal
Server

③
Fo
rw
ar
d
R
eq
ue
st

Overlay
Network

④Arrive First
Establish Unicast Connection

④Arrive Later
Abort

② Send Request

Request Type = 0
CPU 100%

Metadata

Dispatcher

③ Forward Request

① Record
Information

…

• Step 1: Collecting real-time resource status
• Step 2: Sending request and selecting server
• Step 3: Forwarding request to suitable server
• Step 4: Establishing unicast connection and content transmission

Multiple Resource Demands
Information in QUIC

Appending Resource Demand Info
Demand Restriction Allocation (DRA) Alg.

Redundant Forwarding
Fast Forwarding via Overlay Network

Connection Migration in QUIC

DRA Algorithm

DRA Algorithm

1. Metadata in QUIC
• Metadata block in handshake packet
• Both supporting the pre-defined classic resource

compositions and customizable demand weights

2. Zero-Latency Connection Establishment to Dispatchers
• QUIC reduces the handshake delay with 1-RTT/0-RTT rather

than 3-RTT of TCP

3. Eliminating Re-Connection between Client and Server
• Connection migration in QUIC guarantees the feasibility of

the continuous connection even when the IP address changes
• One QUIC connection can accomplish sending, forwarding,

and transmitting

8

QUIC Brings More Benefits

Requested Resource Composition ID (16 bits)

Flag 1 (1 bit) … Flag 8 (1 bit) Flag 9 (1 bit) … Flag 16 (1 bit)

Res_1 Weight (8 bits) Res_2 Weight (8 bits)

… …

… Res_16 Weight (8 bits)

M
et
ad
at
a

H
an
ds
ha
ke
Pa
ck
et

Wi-Fi Connection ID A

Cellular Connection ID A

Mobile

Migration without awareness

The same ID

• QUIC is proposed by Google to reduce the latency and enhance the ability in mobility

Client Server

TCP + TLS1.2 + HTTP
(3-RTT)

1-RTT TCP
handshake

Client Server

TCP + TLS1.3 + HTTP
(2-RTT)

Client Server

QUIC + HTTP/2
(1-RTT)

2-RTT TLS
handshake

1-RTT HTTP
request

1-RTT TCP
handshake

1-RTT TLS
handshake

1-RTT HTTP
request

1-RTT QUIC
handshake

1-RTT HTTP
request

Client Server

TCP + TLS1.2 + HTTP
(3-RTT)

1-RTT TCP
handshake

Client Server

TCP + TLS1.3 + HTTP
(2-RTT)

Client Server

QUIC + HTTP/2
(1-RTT)

2-RTT TLS
handshake

1-RTT HTTP
request

1-RTT TCP
handshake

1-RTT TLS
handshake

1-RTT HTTP
request

1-RTT QUIC
handshake

1-RTT HTTP
request

9

Less Job Completion Time

(a) The mean and median values of job
completion time

(b) The average job completion time of
requests sensitive to different resource types

1. Polygon achieves less job completion time in terms of either the mean or median value

2. Overall improvement benefits from each type of requests, especially bandwidth-
sensitive requests

• Comparison of job completion time performance among DNS-based,
PureAnycast-based, FastRoute, and Polygon

10

Higher Resource Utilization Efficiency

1. Polygon makes better use of the unoccupied servers and alleviates
the resource preemption in crowded regions

2. 64% of CPU-sensitive requests and 34% of bandwidth-sensitive
requests are redirected to other regions

• The number of requests completed in the same 2 hours and the average
resource cost to complete per request

Max improvement ↑13% ↓25% ↑7% ↓18%

Polygon:
A QUIC-Based CDN Server Selection System
Supporting Multiple Resource Demands

11

Thanks for your listening!

1. Requests in different application scenarios would have different
resource type priorities

2. Polygon is a QUIC-based CDN server selection system that supports
multiple types of resource demands

3. A real-world evaluation demonstrates the significant improvement
in job completion time and resource utilization efficiency

Polygon:
A QUIC-Based CDN Server Selection System
Supporting Multiple Resource Demands

12

Mengying Zhou, Tiancheng Guo, Yang Chen, Junjie Wan, Xin Wang

1. Requests in different application scenarios would have different
resource type priorities

2. Polygon is a QUIC-based CDN server selection system that supports
multiple types of resource demands

3. A real-world evaluation demonstrates the significant improvement
in job completion time and resource utilization efficiency

(Technical Details)

22nd ACM/IFIP International Middleware Conference, Industrial Track (Middleware Industry'21)

13

Design Overview

• Step 1: Collecting real-time resource status

• Step 2: Sending request and selecting server

• Step 3: Forwarding request to suitable server

• Step 4: Establishing unicast connection and content transmission

Anycast
Routing

Unicast
Information Update

Client

Dispatcher

① Record

Information
Optimal
Server

Anycast
Request Forward

③ Forward Request

③
Fo
rw
ar
d
Re
qu
es
t

Second Optimal
Server

Overlay
Network

④Arrive First.
Establish Unicast Connection

④Arrive Later
Abort

② Send Request

Request Type = 0
CPU 100%

Metadata

Dispatcher

③ Forward Request

① Record
Information

…

• Diversity of resource status
• Effective demand delivery and robust selection

• Extra delay for connecting and forwarding

14

Practical Challenges

15

Collection of Resource Status
Delay & Bandwidth:
- Provided by the representative agent in

each area
- One dispatcher in each region acts as a

representative agent

CPU:
- Collected by each server
- CPU capability: idle rate × number of

CPU cores × CPU clock frequency

propa
gation

propagation
Dispatcher

Dispatcher

CDN server

CDN server

• Collection interval: Delay: 1h, Bandwidth: 1.5s, CPU: 1.5s

16

Diagram of Metadata Implementation

• Polygon uses a metadata block within the ClientHello
packet to specify resource demands

Client Server

① ClientHello

② ServerHello

③ EncryptedExtensions

④ CertificateRequest

⑤ Certificate
⑥ Finished

Random
SessionID
CipherSuites

CompressionMethods

ProtocolVersion

Initial_max_stream_data
Initial_max_data
Idle_timeout

Max_packet_size
……

Server_unicast_ip
Metadata

The Content of ClientHello

Location of Metadata

Content of TLS During Handshake

Requested Resource Composition ID (16 bits)

Flag 1 (1 bit) … Flag 8 (1 bit) Flag 9 (1 bit) … Flag 16 (1 bit)

Res_1 Weight (8 bits) Res_2 Weight (8 bits)

… …

… Res_16 Weight (8 bits)

M
et
ad
at
a

H
an
ds
ha
ke
Pa
ck
et

The design of metadata

17

Sending Request with Resource Demands

Requested Resource Composition ID (16 bits)

Flag 1 (1 bit) … Flag 8 (1 bit) Flag 9 (1 bit) … Flag 16 (1 bit)

Res_1 Weight (8 bits) Res_2 Weight (8 bits)

… …

… Res_16 Weight (8 bits)

M
et
ad
at
a

H
an
ds
ha
ke
Pa
ck
et

1. Pre-defined classic
resource compositions

2. Customizable
demand weights

e.g. Requested Resource Composition
① ID=1: only sensitive to delay
② ID=2: only sensitive to bandwidth
③ ID=3: only sensitive to CPU
…

e.g. ID=0, and 30% for delay, 20% for
bandwidth, 10% for CPU, 40% for loss

18

Demand Restriction Allocation (DRA) Algorithm

Two aspects determine the server score:
1. Amount of currently available resources
2. Maximum capability of resources

Calculate servers’ scores and pick up the
optimal and the second optimal servers

Dispatcher

Second optimal server

Optimal serverRequest Forwarding

Request Forwarding

Redundant Forwarding
• Avoiding the potential sharp capacity

degradation of the optimal node

• Being triggered when there is no much
difference between the two nodes

• Reducing the extra delay by the introduction of dispatchers
① Zero-latency connection establishment to dispatchers
② Fast forwarding via overlay network
③ Eliminating re-connection between client and server

19

Request Forwarding by Dispatchers

① 0-RTT
Client

Dispatcher

Optimal
Server

Forward Request

Fo
rw
ar
d
R
eq
ue
st

② Overlay
Network

③ Connection
Migration

Send Request

Dispatcher

Forward Request

…

Second Optimal
Server

• Testbed deployment
• 5 dispatchers and 5 CDN servers located in five continents
• 10 clients: Asia (3), North America (3), Europe (2), Australia (1), and

South America (1)

• Virtual machine setting
• Conducted on Google Cloud Platform
• Ubuntu 18.04 LTS, one standard vCPU and 3.75 GB memory

• Simulated requests
• Delay-sensitive: frontpages of Alexa Top 500 Sites
• Bandwidth-sensitive: video file (5MB), visiting 10 times
• CPU-sensitive: 100 random queries in a database with 1 million entries
• The ratio of each type of requests: 4:4:1

20

Experiment Configuration

21

Thanks for your listening!
myzhou19@fudan.edu.cn

https://mengyingzhou.github.io

Polygon:
A QUIC-Based CDN Server Selection System
Supporting Multiple Resource Demands

Mengying Zhou, Tiancheng Guo, Yang Chen, Junjie Wan, Xin Wang

https://mengyingzhou.github.io/

