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Abstract— CDN is a crucial Internet infrastructure ensuring1

quick access to Internet content. With the expansion of CDN2

scenarios, beyond delay, resource types like bandwidth and CPU3

are also important for CDN performance. Our measurements4

highlight the distinct impacts of various resource types on5

different CDN requests. Unfortunately, mainstream CDN server6

selection schemes only consider a single resource type and7

are unable to choose the most suitable servers when faced8

with diverse resource types. To fill this gap, we propose9

Polygon, a QUIC-powered CDN server selection system that10

is aware of multiple resource demands. Being an advanced11

transport layer protocol, QUIC equips Polygon with customizable12

transport parameters to enable the seamless handling of resource13

requirements in requests. Its 0-RTT and connection migration14

mechanisms are also utilized to minimize delays in connection15

and forwarding. A set of collaborative measurement probes and16

dispatchers are designed to support Polygon, being responsible17

for capturing various resource information and forwarding18

requests to suitable CDN servers. Real-world evaluations on the19

Google Cloud Platform and extensive simulations demonstrate20

Polygon’s ability to enhance QoE and optimize resource21

utilization. The results show up to a 54.8% reduction in job22

completion time, and resource utilization improvements of 13%23

in bandwidth and 7% in CPU.24

Index Terms— CDN, QUIC, resource allocation, dispatcher,25

overlay network, anycast.26

I. INTRODUCTION27

CONTENT Delivery Network (CDN) is a vital Internet28

technology that quickly delivers various content to users.29

By replicating content from the source server to CDN servers30
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worldwide, users can access content through nearby servers. 31

Appropriate assignment of CDN servers to users [1], [2], 32

[3] is essential for ensuring CDN service quality. Currently, 33

there are two types of widely used CDN server selection 34

methods. One uses the Domain Name System (DNS) to locate 35

servers with the shortest Round-Trip Time (RTT) [4], adopted 36

by commercial CDN providers like Akamai, Fastly, and 37

EdgeCast. The other solution is based on anycast routing [5], 38

[6], [7], [8]. Anycast [9] allows mapping the same IP address 39

to multiple servers and routing to the servers with the shortest 40

network hops according to routing protocols, making it well- 41

suited for CDNs. Among them, FastRoute [8], which realizes 42

CPU load awareness, has been deployed in Microsoft’s Bing 43

search engine [10]. 44

However, these schemes have the drawback of considering 45

only one single resource type, resulting in the allocation 46

of unsuitable CDN servers when multiple resource types 47

are required [2], [3]. As described in our motivating case 48

study in Section II, different CDN requests may necessitate 49

different resource types. For example, downloading large 50

content requires high bandwidth, while obtaining a set of 51

small files prioritizes low latency. Moreover, methods based on 52

single resource types are vulnerable to population distribution, 53

leading to hot zone problems [11] and inefficient resource 54

utilization in uncrowded areas, significantly increasing service 55

providers’ cost [12]. 56

To address this gap, we propose Polygon, an efficient and 57

scalable CDN server selection system supporting multiple 58

resource requirements. Polygon is built on QUIC [13], [14], 59

an emerging transport layer protocol, utilizing its customizable 60

parameters to transmit resource demand information. Equipped 61

with a set of dispatchers, Polygon parses the resource 62

information in CDN requests. Then, using real-time resource 63

status collected by measurement probes, it identifies the appro- 64

priate CDN servers and forwards the requests accordingly. 65

Introducing dispatchers could bring extra delays in connection 66

and request forwarding. To mitigate such delays, Polygon 67

leverages QUIC’s 0-RTT handshake [15] and connection 68

migration mechanisms to minimize connection delays between 69

the client, dispatcher, and server. We conduct a real-world 70

evaluation on the Google Cloud Platform. Compared with 71

state-of-the-art solutions, Polygon improves CDN performance 72

with a median job completion time reduction of up to 54.8%. 73

Polygon also increases bandwidth utilization by 13% and CPU 74

utilization by 7%. Further extensive simulations demonstrate 75
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that Polygon can more efficiently reschedule global resources76

compared with the commercial CDN schemes.77

Our contributions are summarized as follows:78

• We conduct a motivating case study illustrating that79

different applications prioritize different resource types80

when selecting CDN servers. Our goal is to handle delay-81

sensitive, bandwidth-sensitive, and CPU-sensitive CDN82

requests with an integrated solution.83

• We propose Polygon, a QUIC-powered CDN server84

selection system that supports multiple resource demands.85

Polygon leverages QUIC’s advantages to eliminate the86

extra delays and overhead introduced by the dispatcher.87

• Real-world experiments and extensive simulations88

demonstrate Polygon’s ability to reduce job completion89

time, improve resource utilization, and efficiently90

reschedule global resources with a moderate overhead.91

A preliminary version of this paper has been published92

in [16]. The new contributions include design enhancements,93

implementation optimizations, comprehensive evaluations in94

real-world and simulation environments, and an in-depth95

discussion of Polygon’s scalability and future research96

directions. In Section III, we improve Polygon’s design on97

network resource measurements, server allocation algorithms,98

and resource weight vector calculations, making its operation99

more effective and efficient. Real-world deployment and100

extensive evaluations in various scenarios, presented in101

Section IV and Section V respectively, demonstrate the102

feasibility of deploying Polygon in production environments.103

Designed to be a resource-efficient CDN server selection104

system, Polygon can provide benefits including 1) less job105

completion time, 2) higher resource utilization, 3) fewer error106

requests, and 4) the capability to reschedule global resources107

dynamically.108

The following of this paper is organized as below. Section II109

introduces the insights that inspired Polygon. Section III110

describes the system design and implementation. A real-111

world evaluation is presented in Section IV, followed by112

extensive evaluations under various situations in Section V.113

Subsequently, Section VI discusses the scalability of Polygon114

and explores some future research. Section VII enumerates the115

related work. Finally, we conclude our work in Section VIII.116

II. MOTIVATING CASE STUDY117

CDNs have evolved to support various content types,118

including web content [17], video streaming [18], and replica119

databases [19]. This section presents a case study revealing120

that CDN requests for different content types rely on distinct121

resource demands.122

A. Three CDN Request Patterns123

We select three typical websites, Twitter.com,124

YouTube.com, and Microsoftonline.com, as case studies.125

These sites serve millions of users globally [20] and rely126

heavily on global CDN infrastructure [21], representing127

online microblogging, streaming media, and productivity128

tools, respectively.129

Fig. 1. Cumulative distribution functions of the ratios of waiting time and
download time.

TABLE I
RESOURCE CONFIGURATIONS IN THE CASE STUDY

We analyze the waiting time and download time [22], 130

[23] of CDN requests on these three websites. According 131

to Chrome’s document [24], waiting time is defined as the 132

duration from sending a request to receiving the first byte of 133

the response, comprising one RTT and the server execution 134

time. A longer waiting time indicates a longer server execution 135

time given the same RTT delay. Download time is the duration 136

spent receiving data, with a longer download time suggesting 137

a slower network or larger data volume. These two parts 138

constitute the majority of time to complete CDN requests [23]. 139

We use Chrome-HAR1 to capture the waiting time and 140

download time, and treat each website entry as a CDN request. 141

The capture process for these websites is conducted on the 142

same machine under the same network conditions. 143

We calculate the ratios of waiting time and download 144

time for each request. The Cumulative Distribution Functions 145

(CDF) of these ratios for the three websites are shown in 146

Fig. 1. Notably, over 60% of requests on Microsoftonline.com 147

have a waiting time ratio exceeding 0.8, while Twitter.com 148

and YouTube.com have fewer requests with such high waiting 149

time ratios. In contrast, the download time ratios for requests 150

on Microsoftonline.com are smaller than those on Twitter.com 151

and YouTube.com. 152

These differences in waiting time and download time 153

highlight that different services rely on distinct network 154

resources. We introduce the concept of resource sensitivity: 155

the degree to which request complete time changes due to 156

variations in resource quality. Considering classic application 157

scenarios, we categorize CDN requests into three sensitivity- 158

related groups based on three common resource types: delay, 159

bandwidth, and CPU capability. These resource types are 160

widely recognized as representative of service resources [26]. 161

1Chrome-HAR [25] is a file format that records session data of the browsing
pages, including each entry’s timestamps, load time, and size.
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Fig. 2. JCT of the three CDN request types.

While other resources, such as network availability and storage162

ability, are also important, this study focuses on these three163

mainstream types as typical examples for simplicity.164

• Delay-sensitive requests are sensitive to network delay,165

commonly found in activities such as web browsing,166

involving the retrieval of numerous small-sized contents167

from web pages.168

• Bandwidth-sensitive requests are sensitive to available169

bandwidth, typically occur in downloading scenarios,170

including downloading large files or video streaming.171

• CPU-sensitive requests are sensitive to CPU capability,172

frequently observed in computing tasks like database173

queries that demand high I/O and intensive computation.174

B. Verification on Resource Sensitivity175

We conduct a case study on the Google Cloud Platform176

to verify the sensitivity of three CDN request types to177

different resources. The requests are emulated as follows. For178

delay-sensitive requests, we crawl the front pages of Alexa179

Top 500 Sites [20] and generate random visits to these pages.180

For bandwidth-sensitive requests, we use a 5MB video to181

generate a media CDN request. For CPU-sensitive requests,182

we execute 100 random queries on a database with one million183

entries. Each type generates 1,000 requests and is requested184

by a client running Ubuntu 18.04 LTS with one standard185

vCPU and 3.75 GB of memory. For resource setup of servers,186

we use “poor”, “medium”, and “good” to represent the servers’187

varying service quality levels in terms of delay, bandwidth, and188

CPU capability. Detailed configurations are listed in Table I.189

We use job completion time (JCT) [27] as our metric.190

The results in Fig. 2 show significant differences in resource191

sensitivity of different request types. Delay-sensitive requests192

in Fig. 2(a) and CPU-sensitive requests in Fig. 2(c) exhibit193

reduced JCT as their dominant resource quality improves.194

Bandwidth-sensitive requests respond to changes in both195

bandwidth and delay, as shown in Fig. 2(b). Nevertheless,196

bandwidth still plays a dominant role. In comparison, JCT197

remains stable when irrelevant resource types change. Thus,198

to optimize CDN performance, server selection must consider199

multiple resource types rather than focusing on a single one.200

III. DESIGN AND IMPLEMENTATION201

In this section, we present the design and implementation202

of Polygon. First, we show the overall workflow of our203

solution (Section III-A). Then, we list the design goals204

for implementing Polygon (Section III-B), where these205

Fig. 3. Workflow of polygon for CDN server selection.

goals are embedded into the following three components: 206

1) scalable resource information collection (Section III-C), 207

2) adaptive resource demand design and allocation algorithm 208

(Section III-E), and 3) low-latency connection and forwarding 209

(Section III-F). Finally, we describe the detailed implementa- 210

tion (Section III-G). 211

A. Workflow of Polygon 212

To realize multiple resource types perception, we propose 213

Polygon, a QUIC-powered CDN server selection system. 214

As depicted in Fig. 3, the workflow of Polygon is as follows: 215

Step 1 (Collecting Resource Status Information): Poly- 216

gon allocates CDN servers based on requests’ resource 217

demands and current resource availability. Therefore, Polygon 218

periodically collects resource information, including delay, 219

bandwidth, and CPU capability, from widely deployed 220

lightweight measurement probes (Section III-C). 221

Step 2 (Retrieving Resource Demand and Selecting Suitable 222

Servers): Unlike previous solutions that directly send CDN 223

requests to servers, the requests are first directed to an in- 224

network dispatcher via anycast routing. Then, the dispatcher 225

retrieves the request’s resource demand set specified by the 226

CDN provider or application developers (Section III-D) and 227

selects suitable CDN servers using the Demand Restriction 228

Allocation algorithm (Section III-E). 229

Step 3 (Forwarding Request to Selected Server): After 230

selecting the appropriate CDN server, the dispatcher forwards 231

the request to it. The server may be located in the same 232

geographic region or in another. To reduce the delay caused by 233

cross-region forwarding, Polygon establishes a fast-forwarding 234

overlay network among dispatchers (Section III-F). 235

Step 4 (Establishing Connection and Data Flows): Upon 236

receiving the request, the server sends a response with a 237

migration signal to the client. Leveraging QUIC’s connection 238

migration function, the client seamlessly transfers the 239

connection endpoint from the dispatcher to the server, avoiding 240

the need to establish a new connection (Section III-F). 241

B. Design Goals 242

In the above workflow, we involve three modules: 1) 243

resource information collection, 2) resource demand design 244
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and allocation algorithm, and 3) connection and forwarding245

optimization. We systematically design these modules to246

facilitate Polygon with the following goals.247

Goal 1 (Efficient and Scalable Resource Status Monitoring):248

The vast number of server-client pairs makes it impractical to249

measure the end-to-end links for all pairs within a reasonable250

timeframe. Additionally, due to the dynamics of the Internet,251

the resource status might be quite different between adjacent252

moments. Therefore, resource status monitoring must be253

efficient and scalable.254

Goal 2 (Adaptability to Diverse Usage Scenarios): Polygon255

must be adaptive to diverse applications and varying expertise256

levels, supporting both automatic and customizable resource257

demand configurations. Moreover, the CDN allocation258

algorithm should effectively handle variable resource types and259

remain robust in various situations.260

Goal 3 (Minimize Delay in Connection and Forwarding):261

Extra delay may occur due to the connection establishment for262

data flows and potential cross-regional forwarding. Minimizing263

such delay is crucial to maintain Polygon’s advantages.264

C. Resource Status Collection265

Various factors can influence CDN performance, including266

delay, bandwidth, network jitter, packet loss rate, and the267

capabilities of CPU, GPU, storage, and memory [26]. These268

factors are controlled by two main types of resources: network-269

related resources and hardware resources. For network-270

related resources, real-time monitoring of all end-to-end271

information is impractical. Therefore, we adopt a regional272

network aggregation strategy to keep monitoring costs modest.273

We deploy measurement probes to monitor network resources,274

with their results representing the network resource status of275

clients in the same region. Hardware resources are usually self-276

reporting, making their monitoring lightweight and scalable.277

1) Regional Network Aggregation: Network resources are278

highly related to geographic location [28], [29]. Thus,279

we aggregate network resource information within a region280

by deploying probes with measurement functions.281

Region Definition. Regions can be defined as geograph-282

ically adjacent areas (e.g., provinces or cities) or network283

regions (e.g., autonomous systems). Boundaries are deter-284

mined by noticeable differences in network conditions [29].285

For instance, communications between endpoints in different286

cities will experience additional delays compared with287

communications within the same city.288

Measurement Probe. Measurement probes are specialized289

devices for collecting and analyzing data on network290

performance and behavior, providing insights into Internet291

connectivity and issues identification. Platforms like RIPE292

Atlas, SamKnows, and BISmark [30] offer probe services.293

Probes are arranged near users at the city level in most regions.294

An analysis of the average RTT from Points of Presence295

(PoPs) to nearby clients showed that their RTT difference does296

not exceed 10 ms [31]. Additionally, we further conduct a case297

experiment to validate the effectiveness of probes in accurately298

representing client network conditions (Appendix).299

2) Available Capability Calculation: A server’s hardware300

includes processing capability, memory, and storage. Available301

capability is generally defined as the ratio of idle parts to the 302

total capacity. Calculation methods vary for each resource. 303

For example, available CPU capability is calculated as idle 304

rate ×number of CPU cores× CPU clock frequency. Most 305

hardware resources are equipped with well-developed and 306

lightweight monitor tools that have a negligible impact on CPU 307

overhead. 308

3) Gathering Resource Information Into Dispatchers: We 309

introduce dispatchers to gather and manage the information 310

about servers’ resources. After each collection round, network 311

resources and hardware resources information is delivered to 312

each dispatcher, as depicted in Step 1 in Fig. 3. Dispatchers 313

are not only responsible for periodically collecting resource 314

information, but also for making server allocation decisions 315

and forwarding requests to the selected CDN servers. Built 316

on existing load balancing techniques such as Ananta [32], 317

Maglev [33], Duet [34], dispatchers can handle millions of 318

requests simultaneously. Dispatchers are strategically deployed 319

in datacenters near major PoPs to forward requests to local and 320

cross-regional CDN server clusters with minimal hops. 321

D. Resource Demand Block 322

To represent request resource demands effectively and 323

flexibly, we design a resource demand block that supports both 324

pre-defined compositions and customizable configurations. 325

We also propose a hybrid resource demand calculation that 326

combines standard content profile categorization and resource 327

sensitivity analysis to balance scalability and accuracy. 328

1) Block Design: We design a resource demand block 329

to carry the resource demand information, structured into 330

three parts: resource composition ID, resource type flag, and 331

resource weight vector, as shown in Fig. 4. This design 332

provides flexibility with two options: pre-defined demand 333

compositions and customizable demand configurations. 334

Pre-defined resource compositions represent a set of typical 335

resource demand configurations, each pre-configured with 336

specific request flag values and resource weight vectors. Each 337

composition is assigned a unique ID. 338

The pre-defined compositions only cover certain scenarios. 339

Incorporating the resource type flag and weight vector allows 340

for customized complex resource demand configurations. The 341

flag field has 16 bits, with each bit corresponding to a resource 342

type, which has been sufficient to cover the commonly used 343

resource types. When a resource flag is set to True, it signifies 344

sensitivity to that resource, with the detailed sensitivity value 345

specified in the corresponding resource weight vector. Each 346

resource has an 8-bit weight, representing the percentage of 347

demand for that type relative to the total resource demand, 348

ranging from 0 to 100. A larger weight indicates a greater 349

demand for the corresponding resource type. 350

2) Resource Weight Vector Calculation: Assigning appro- 351

priate resource weight vectors to each CDN resource type 352

is crucial for Polygon’s effectiveness. However, this task is 353

non-trivial, and manual allocation is not feasible. We propose 354

a hybrid resource weight calculation that combines standard 355

content profile categorization with resource sensitivity analysis 356

to balance scalability and accuracy. Initially, CDN content 357
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Fig. 4. Design of resource demand block.

could be classified into one of the standard profiles. If the358

content’s behavior deviates from its assigned category’s359

pattern, resource sensitivity analysis is employed to calculate360

a more precise resource weight vector.361

Standard Content Profiles and Benchmarks. We establish362

standard content profiles that represent common CDN content363

types based on attributes like file type, size, and format.364

We have profiled small images, large videos, and resource365

retrieval. Each CDN content will be classified into one of these366

profiles based on its attributes, which enables quick and low-367

cost initial classification without explicit sensitivity analysis.368

However, initial classification might not always be accurate.369

For instance, a video chunk might be classified as “media” due370

to its size. However, it should be reclassified as “quick fetch”371

since it is the beginning chunk of a video, where minimizing372

delay is more crucial. Automated webpage analysis tools373

like Lighthouse2 can help identify misclassifications. These374

tools evaluate webpages by simulating loading activities and375

generate detailed reports with various metrics. Each profile376

is associated with a benchmark set that contains CDN377

performance under different resource conditions. Comparing378

Lighthouse’s report with these benchmarks can verify the379

correctness of the initial classification. Significant deviations380

indicate misclassification and the necessity for adjustments.381

Resource Sensitivity Analysis. When benchmark verifi-382

cation indicates that the CDN content does not align with383

the assigned category, resource sensitivity analysis will be384

conducted to calculate its resource weight vector. This vector,385

along with the CDN content attributes, will be recorded as a386

new profile.387

Resource sensitivity analysis works by assessing perfor-388

mance differences across varying resource quality levels,389

reflecting the CDN content’s sensitivity to a specific resource.390

We simulate environments with different resource quality391

levels, collect the corresponding load times, and compute the392

resource weight vectors. Specifically, each resource weight wj393

is calculated as follows: wj =
tj
low−tj

high∑n
j=1(t

j
low−tj

high)
, where n is394

the number of resource types, tjlow is the load time under a395

low resource quality level, and tjhigh is the load time under a396

high resource quality level.397

3) Default and Customizable Configuration: Each hosted398

CDN content has a unique and stable resource weight vector399

calculated and stored by its provider. This vector can be400

initialized using the method described above when the CDN401

content is first declared to the provider. After receiving a402

request, the dispatcher retrieves the corresponding resource403

2https://developer.chrome.com/docs/lighthouse/overview

weight vector from the CDN provider by default, and then 404

selects a CDN server using the algorithm described in 405

Section III-E. 406

Polygon also supports customizable resource weight vectors 407

on the client side, accommodating the diverse resource 408

priorities of different users. This is achieved using the 409

QUIC Transport Parameters Extension, which allows extra 410

parameters to be transmitted during the handshake, enabling 411

flexible configurations between clients and servers. With 412

this function, authorized developers, who have permission 413

to monitor and manage CDN content [35], can configure a 414

customized resource weight vector to meet user requirements. 415

However, customizable resource requirements may introduce 416

risks of resource abuse and potential malicious behavior. 417

Authentication mechanisms such as API keys and OAuth 418

tokens [36], [37] can be used to verify the legitimacy 419

of CDN requests. Note that if the next request’s resource 420

requirements differ from the previous one, a new connection 421

will be launched. The new connections’ cost can be eliminated 422

using QUIC’s 0-RTT connection resumption, as outlined in 423

Section III-F. 424

E. Server Selection Algorithm 425

In this section, we present our server selection algorithm 426

called Demand Restriction Allocation (DRA). Its effectiveness 427

lies in optimizing server allocation based on specified resource 428

demands. The algorithm comprises two parts: server scoring 429

and redundant forwarding. Server scoring ranks servers by 430

assessing their maximum and currently available resources. 431

Redundant forwarding enhances robustness in possible failed 432

responses. The algorithm’s pseudo-code is provided in Alg. 1. 433

Note that this algorithm can be generalized to select a logical 434

server, which may represent a compute cluster comprising 435

multiple computational units, providing flexibility in allocation 436

granularity according to scale and specific requirements. 437

1) Server Scoring: Two factors determine server i’s score: 438

the capacity quota Qi and the available resources Ai (line 2 439

to 4 of Alg. 1). 440

For a pending allocation request, the capacity quota Qi sets 441

the upper limit of resources allocated to this request in server i. 442

It is computed by proportionally distributing the total resource 443

capacity among all connections. In line 2, we initially derive 444

a unit of the capacity quota of resource j by dividing the total 445

capacity rtotal
ij by the sum of weights of n connections and the 446

pending allocation request. Then, this unit of capacity quota 447

is multiplied by the weight wj to yield the capacity quota 448

for resource j. Last, the capacity quotas for all resources are 449

summed to get the overall capacity quota Qi for server i. The 450

total capacity representation varies according to the resource 451

type, but their values are all normalized from 0 to 1. The 452

second factor, currently available resources Ai, is calculated 453

by summing the availability of all resources in the server i 454

(line 3). This indicator is more instructive in situations where 455

resources are not overloaded, enabling pending allocation 456

requests to fully use remaining resources. 457

We set a threshold for cross-region forwarding operations 458

(line 7). Cross-region forwarding might result in a performance 459
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Algorithm 1 Demand Restriction Allocation Algorithm for
Server Selection With Redundant Forwarding
Input: Resource types J = (j)16j=1; Pending allocation request

with resource demand vector W = (wj)
16
j=1; Server list S =

(S1, S2, . . . , Sm); Total capacity of server i for resource type j
rtotal

ij and current available capacity ravailable
ij .

Output: the optimal server S1st and the second_optimal server S2nd.
Initialization: S1st ← NULL, S2nd ← NULL

1: for SiinS do
2: Qi =

∑16
j=1(

rtotal
ij∑n

k=1 wk
j +wj

∗ wj)

3: Ai =
∑16

j=1 ravailable
ij

4: Si.score = Qi + Ai

5: end for
6: candidate_list← sort(S)
7: candidate_list← optimize_with_threshold(candidate_list)
8: S1st ← get_optimal(candidate_list)
9: if S1st.score−S2nd.score

S1st.score
< 10% or S2nd.RTT - S1st.RTT <

30 ms then
10: S2nd ← get_second_optimal(candidate_list)
11: end if
12: return S1st, S2nd

downgrade when the forwarding cost is higher than the gained460

benefit. Therefore, Polygon only selects those cross-region461

servers whose scores are higher than local CDN servers’ scores462

by a certain degree.463

2) Redundant Forwarding: To avoid possible response464

failures caused by potential sharp capacity degradation of465

the optimal server, we introduce a redundant forwarding466

mechanism (lines 8 to 10 of Alg. 1). Polygon selects both the467

optimal and the second optimal servers and forwards requests468

to both of them. This mechanism activates only when their469

score difference is below 10%, and the RTT difference is470

less than 30 ms. Accordingly, the client might receive two471

responses consecutively. The client only responds to the first472

received response and establishes a unicast connection with473

the corresponding server, while discarding other responses.474

F. Request Forwarding475

The introduction of dispatchers inevitably brings extra delay,476

including the time for connection, forwarding, and client-477

server connection establishment. Polygon leverages QUIC to478

address this challenge. Compared with TCP + TLS 1.2, QUIC479

offers enhancements like lower latency handshakes (1-RTT480

and 0-RTT) and supports connection migration for seamless481

endpoint transfer.482

1) Quick Connection to Dispatchers: Polygon uses anycast483

routing [9] to connect to the dispatcher with the shortest hops484

and optimizes handshake delay with QUIC’s 1-RTT and 0-RTT485

mechanisms. In contrast to TCP, which requires 3 RTTs for486

transport and security handshakes, QUIC combines them into487

a 1-RTT handshake. The 0-RTT mechanism further optimizes488

delay. 0-RTT handshake in QUIC allows a client to resume a489

previous connection instantly by reusing a pre-shared key [38]490

retained before, eliminating the need for a full handshake.491

Frequent interactions between clients and dispatchers provide492

opportunities for the 0-RTT handshake.493

Certainly, 0-RTT connections might be vulnerable to replay494

attacks [39], leading to unauthorized access. Thankfully, there495

are feasible solutions to secure 0-RTT connections [15], 496

[39]. Additionally, 1-RTT connections have already effectively 497

demonstrated QUIC’s advantage in minimizing connection 498

delays. The decision to employ the 0-RTT mechanism depends 499

on the specific requirements and security considerations of the 500

CDN provider. 501

2) Fast-Forwarding via Overlay Network: When the 502

selected server and dispatcher are in the same datacenter or 503

region, the dispatcher can directly forward requests through 504

the CDN provider’s intranet, where the forwarding delay is 505

negligible [40]. However, forwarding requests to servers in 506

other regions can result in higher delays [41]. To mitigate this, 507

we construct an overlay network [42], [43] for fast-forwarding. 508

An overlay network is a virtual network built on top of an 509

existing physical network infrastructure, optimizing routing to 510

bypass congested or slow links based on network topology 511

and traffic patterns [44], [45]. 512

The overlay network connects all dispatchers across regions. 513

This means that the cross-regional forwarding follows the path 514

“dispatcherA → dispatcherB → server”. This hierarchical 515

routing allows easy scaling of server capacity within the region 516

without needing to check the entire topology. Major tech giants 517

like Google [45] and Microsoft [46] have adopted this structure 518

for inter-region data exchange. 519

3) Mitigating Connection Delays Between Client and 520

Server: Finally, we leverage QUIC’s connection migration 521

mechanism to reduce connection delays between clients and 522

selected servers. Unlike TCP-based CDN server selection, 523

which requires establishing a new data flow connection 524

after server assignment, QUIC supports seamlessly migrating 525

connections from the dispatcher to the server, minimizing re- 526

connection delays inherent in TCP-based systems. The detailed 527

connection migration mechanism is described below. 528

QUIC specification includes a feature called Server’s Pre- 529

ferred Address [14], allowing a server to accept connections 530

on one IP address and transfer them to a preferred IP address 531

shortly after the handshake, transitioning from anycast to more 532

stable unicast [47]. This connection migration mechanism 533

must adhere to the rule of ignoring packets received on 534

addresses where migration has not started yet. To fulfil this 535

requirement, we configure all dispatchers and servers to share 536

the same anycast address, along with each server also having 537

its unique unicast address. This setup guarantees that the 538

server and dispatcher have the same IP address, meeting the 539

conditions for initiating connection migration. 540

Upon receiving a handshake request forwarded by the 541

dispatcher, the server initiates connection migration. In the 542

handshake response to the client, the server includes the 543

preferred_address parameter with its unicast address and 544

sends this response via the anycast network interface. Since 545

the server and dispatcher share the same anycast address, 546

the client accepts the handshake response. The client parses 547

the preferred_address and verifies the reachability of the 548

preferred address. If the new preferred address is reachable, 549

the client completes the connection establishment with the 550

preferred address (i.e., the unicast address of the CDN 551

server) and interrupts the old connection with the dispatcher. 552
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This mechanism allows the client to run on the original553

connection for subsequent data transmission, eliminating the554

need for a new connection. With connection migration,555

Polygon efficiently handles requests, forwards requests, and556

establishes data transmission connections through one QUIC557

connection, significantly reducing delay.558

G. Implementation559

Our prototype implementation consists of three key560

components: resource measurement, fast-forwarding overlay561

network, and deployment requirements for QUIC.562

1) Resource Measurement: In our prototype, we monitor563

three typical resource types: network delay, bandwidth,564

and CPU capability. Network delay and bandwidth are565

monitored by probes. We obtain the network delay by Ping.3566

Available bandwidth is measured using the IGI/PTR [48]. CPU567

capability is reported with cpuacct.4568

These resource collection intervals vary: delay is measured569

every 15 minutes, and bandwidth and CPU every 10 seconds.570

A 15-minute interval is sufficient to accurately characterize571

delay, as delay variations are generally below 10 ms and are572

insensitive to measurement intervals [48]. However, in cases573

of severe network congestion, significant delay changes can574

occur. Fixed measurement intervals might result in out-of-575

date resource information, affecting CDN server allocation576

accuracy. To address this, if bandwidth degrades by 30% and577

persists for 5 minutes, an extra delay measurement will be578

triggered to ensure adaptability and resilience. The cost of579

extra measurements is moderate due to the infrequent occur-580

rence and low expense of delay measurements. Bandwidth581

and CPU experience frequent changes influenced by active582

transmission processes. To balance timeliness and accuracy,583

we set a 10-second measurement interval, which meets the584

duration requirements of most bandwidth testing services [49].585

Our evaluations confirm the reasonableness of these interval586

settings, with Section IV demonstrating its effectiveness and587

Section V-E verifying the modest traffic overhead.588

These values are specific to our prototype design and exper-589

imental environment. For real-world deployment, adjustments590

are necessary based on factors like deployment scale, real-time591

responsiveness requirements, and measurement overhead.592

2) Overlay Network: To achieve quick forwarding among593

servers, we establish an overlay network that connects dis-594

patchers using Generic Routing Encapsulation (GRE) tunnels.595

GRE tunnels are implemented with Open vSwitch [43],596

an open-source software switch supporting various tunneling597

protocols. To prevent multiple cross-region forwarding and598

network loops, we limit each request to be forwarded only599

once through the overlay network. If a dispatcher receives600

a request that has already been forwarded, it will directly601

forward the request to a local CDN server without exploring602

alternative servers in other regions.603

3) Deployment Requirements for QUIC: Adopting Polygon604

requires a customized development on top of the QUIC605

protocol to implement the dispatcher. The dispatcher serves as606

3https://linux.die.net/man/8/ping
4https://www.kernel.org/doc/Documentation/cgroup-v1/cpuacct.txt

Fig. 5. Architectures of DNS, PureAnycast, FastRoute and Polygon.

a forwarding agent and is responsible for two main tasks: 1) 607

parsing requests and determining their resource demand blocks 608

and 2) forwarding the request to the appropriate CDN server. 609

The first task requires the dispatcher to parse and modify 610

request headers [50]. The second task involves encapsulating 611

the request with GRE and forwarding it. As the dispatcher 612

adheres to the QUIC specification and does not modify the 613

packet structure, it is fully compatible with standard QUIC- 614

based clients and servers. This customization is reasonable, 615

given that the dispatcher is controlled by a CDN provider to 616

improve user experience. 617

For client and server implementations, using mainstream 618

browsers (e.g., Chrome,5 Firefox6) and web server software 619

(e.g., NGINX7) supporting QUIC connections is sufficient. 620

The used Server’s Preferred Address and connection migration 621

functions are officially released in the QUIC specification [14] 622

and implemented on the client side [50] and the server 623

side [42]. Polygon can also work with other connection 624

diversion techniques [8] to maintain compatibility when 625

connection migration is not implemented or is disabled, albeit 626

with some performance loss. On the basis of ngtcp2,8 we 627

develop the client, server, and dispatcher, along with the 628

implemented Server’s Preferred Address function [42]. The 629

source code and documentation for our prototype are available 630

at https://github.com/mengyingzhou/Polygon. 631

IV. EVALUATION IN REAL NETWORK 632

This section presents the evaluation of Polygon. We begin 633

by outlining the evaluation setup (Section IV-A). Next, 634

we assess Polygon’s performance in terms of JCT (Section IV- 635

B) and resource utilization (Section IV-C). We then 636

demonstrate Polygon’s ability to reduce error requests under 637

server overload conditions (Section IV-D) and show that this 638

improvement is owing to appropriate cross-region request 639

allocation (Section IV-E). Last, we display the necessity of 640

redundant forwarding (Section IV-F). 641

A. Experiment Setup 642

1) Baselines: We compare Polygon with three repre- 643

sentative CDN server selection schemes: the widely used 644

5https://quiche.googlesource.com/quiche
6https://github.com/mozilla/neqo
7https://quic.nginx.org
8https://github.com/ngtcp2/ngtcp2
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DNS-based CDN selection system [4], PureAnycast [51], and645

FastRoute [8]. Figure 5 illustrates the architectural differences646

between these schemes. The DNS-based and PureAnycast647

schemes share the same architecture shown in Figure 5(a).648

• DNS-based scheme [4] allocates CDN servers by649

mapping the same domain name to different IP addresses650

using widely deployed regional DNS servers. This651

scheme is easy to operate but relies on large-scale DNS652

infrastructure and lacks awareness of server resource653

loads.654

• PureAnycast [51] employs the raw anycast CDN selection655

approach, where multiple CDN servers broadcast the656

same IP address. Client requests are routed to the nearest657

CDN server with the fewest network hops according to658

Border Gateway Protocol (BGP). Despite its simplicity659

and cost-effectiveness, PureAnycast also lacks awareness660

of server resource loads.661

• FastRoute [8] organizes CDN servers hierarchically to662

balance traffic under heavy loads. Servers close to clients663

form the outer layer, while backup servers constitute the664

inner layers. When the load on outer layer servers exceeds665

a threshold, FastRoute modifies DNS resolution to divert666

new requests to inner layer servers for load balancing.667

However, FastRoute may result in the underutilization of668

servers at the same layer, as the request redirection only669

occurs from the outer to inner layers, excluding within670

the same layer.671

2) Testbed Configuration: We evaluate baselines and672

Polygon on the Google Cloud Platform. The platform restricts673

personal accounts to a total CPU quota of 10 [52]. As each674

VM requires at least one CPU, an account can only create up675

to 10 VMs simultaneously. Meanwhile, servers and dispatchers676

need to be on the same account for anycast functionality.9677

To mitigate this limitation, we use two accounts: one creates678

five servers and five dispatchers across five continents, and the679

other creates 10 clients (three in Asia, three in North America,680

two in Europe, one in Australia, and one in South America).681

In addition to the server and client setup, each CDN682

scheme has its unique configurations: 1) Polygon requires one683

dispatcher per continent, implemented on Maglev [33], sharing684

the same anycast IP with servers9. 2) DNS-based scheme needs685

a DNS resolver, implemented with BIND.10 3) PureAnycast686

involves configuring all servers with the same anycast IP9. 4)687

FastRoute needs to build a virtual hierarchical architecture on688

servers. Following FastRoute’s server placement design [8],689

we select servers close to most users (Asia, Europe, North690

America) for the outer layer and servers in regions with691

cheaper costs (Australia, South America) for the inner layer.692

FastRoute also requires a DNS resolver to adjust servers’ IP693

addresses to realize request redirection.694

3) Evaluated Requests: We construct the evaluated requests695

based on the three request types defined in Section II,696

with a ratio of 4:4:1 for delay-sensitive, bandwidth-sensitive,697

and CPU-sensitive requests, respectively. The ratio for CPU-698

sensitive requests is set lower due to limited server computing699

capacity. The three types of requests are single-resource700

9https://cloud.google.com/load-balancing
10https://www.isc.org/bind

Fig. 6. JCT performance comparison.

sensitive, with only the weight of the sensitive resource set 701

to 100 and the rest to 0. For example, bandwidth-sensitive 702

requests have a resource vector of [0, 100, 0, 0, 0, 0, 0, 0, 0, 703

0, 0, 0, 0, 0, 0, 0]. Each evaluation runs for about one hour, 704

with five repetitions per scheme to mitigate network fluctuation 705

effects. 706

We aim to evaluate Polygon’s server allocation effectiveness 707

under high concurrency. Due to quota constraints [52], 708

we can only create 10 VMs as clients, each running 709

ten processes simultaneously to simulate high concurrency. 710

Although running multiple processes on one client may 711

slightly reduce the realism, our evaluation on the Google 712

Cloud Platform is still meaningful, providing practical results 713

in a real network environment. Moreover, monitoring logs 714

show that the client uses a maximum of 30% CPU and 715

5% memory, and the client bandwidth is set higher than 716

the server’s. Thus, running multiple processes on a client 717

will not create additional bottlenecks. Additionally, to address 718

this experimental limitation, we further evaluate Polygon 719

under 105 clients in the follow-up simulations (Section V- 720

B), achieving consistent performance with this setup using 721

multiple processes per client. 722

4) Metrics: Three metrics are selected for performance 723

evaluation: 724

• Job Completion Time (JCT) [27] is defined as the time 725

taken to complete a CDN request. Specifically, JCT 726

measures the duration from the start of the request to 727

the end of the response data transmission. 728

• Cost per request (Cost / # Req.) [18] is defined as 729

the average resource cost to complete each request. 730

This metric measures the cost of bandwidth and 731

CPU resources. For bandwidth, it is calculated as 732∑
traffic

# of requests . For CPU, it is
∑

CPU usage
# of requests . 733

• Error ratio [53] is defined as the ratio of failed 734

requests per second that the server does not execute 735

successfully. Failures situations include unresponsive 736

servers, interrupted connection, and processing timeouts. 737

B. Less Job Completion Time 738

JCT is a key metric for evaluating CDN content fetching 739

performance [54]. Fig. 6(a) depicts the JCT for the four 740

methods at the 25th, 50th, and 75th percentiles. Polygon 741

outperforms all baselines. Compared with the second-best 742

method, Polygon reduces JCT by 37.5% at the 25th percentile, 743

5.8% at the 50th percentile, and 8.1% at the 75th percentile. 744

We further analyze what types of requests contribute to 745

Polygon’s performance superiority in Fig. 6(b). Polygon 746
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Fig. 7. Traffic utilization with varying bandwidth levels. p is Pearson
correlation coefficient between capacity and bandwidth utilization.

TABLE II
REQUESTS THROUGHPUT AND AVERAGE RESOURCE

COST FOR BANDWIDTH AND CPU

achieves the lowest average JCT values for all request747

types. Notably, for CPU-sensitive requests, Polygon shows748

a reduction of up to 57.7% compared with FastRoute. This749

is owing to Polygon redirecting 64.6% of these requests to750

less occupied regions, alleviating congestion on busy servers.751

A similar improvement is observed for bandwidth-sensitive752

requests.753

Such redirection behavior also prevents performance degra-754

dation of connections in crowded regions, which is reflected755

in the reduced JCT for delay-sensitive requests. Unlike other756

requests, none of the delay-sensitive requests are forwarded to757

other regions (details discussed in Section IV-E). However,758

their JCT still decreases as Polygon prevents resource759

deprivation in local servers. By offloading downloading and760

computing tasks to other regions, delay-sensitive requests can761

use more resources to speed up completion. This indicates762

that request forwarding not only significantly reduces the JCT763

of forwarded requests but also enhances the performance of764

non-forwarded requests.765

C. Higher Resource Utilization766

In addition to reducing JCT, Polygon improves overall767

server-side resource utilization and reduce request costs for768

service providers [12].769

1) Fully Leveraging Upgraded Bandwidth Resources:770

We compare the bandwidth utilization of each scheme in771

detail. We manually limit the bandwidth capacity of servers772

to 1 Mbps, 2 Mbps, 10 Mbps, 20 Mbps, and 30 Mbps using773

Wonder Shaper.11 In Fig. 7, we plot the bandwidth utilization774

of the four CDN schemes in five different levels of bandwidth.775

At 1 Mbps and 2 Mbps, all schemes exhibit similar776

bandwidth utilization. However, as bandwidth capacity777

increases, the DNS-based scheme and PureAnycast do not778

show proportional increases in utilization, indicating they779

cannot effectively use upgraded resources. FastRoute shows780

11https://github.com/magnific0/wondershaper

Fig. 8. Ratio of error requests over time.

a positive correlation between bandwidth capacity growth and 781

utilization, but still lags behind Polygon. 782

To quantify the relationship between capacity and uti- 783

lization, we calculate their Pearson correlation coefficient. 784

A higher Pearson correlation coefficient p indicates a 785

stronger relationship between capacity and utilization. Polygon 786

achieves the highest p value of 0.965, followed by FastRoute 787

at 0.937. The DNS-based scheme gets 0.933, and PureAnycast 788

only gets 0.923. This indicates that considering resource 789

demands helps to fully utilize upgraded resources. 790

2) Reducing Request Costs: Table II shows request 791

throughput and average cost per request for bandwidth 792

and CPU. Compared with PureAnycast, Polygon increases 793

bandwidth-sensitive request throughput by 13% and reduces 794

costs by 25% while also improving CPU-sensitive request 795

throughput by 7% and reducing costs by 18%. PureAnycast 796

and DNS-based schemes complete fewer requests and incur 797

higher costs as they only allocate requests to local CDN 798

servers. The local servers could be unavailable when flooded 799

with requests. 800

In particular, FastRoute completes only 497 bandwidth- 801

sensitive requests, just 23% of Polygon’s total. Some requests 802

are forwarded to unsuitable servers due to FastRoute’s inability 803

to consider request sensitivities. Another factor resulting in 804

FastRoute’s poor performance is its inflexible hierarchical 805

load balancing, which restricts request redirection only from 806

outer to inner layers, excluding within the same layer. This 807

inflexibility, coupled with uneven global traffic distribution, 808

leads to server overload in some regions while others remain 809

idle, worsening resource utilization imbalance. 810

D. Error Ratio 811

This subsection examines Polygon’s ability to handle error 812

requests when servers are overloaded. An error request 813

occurs when the server fails to execute successfully due 814

to unresponsiveness, interrupted connections, or processing 815

timeouts. We plot the request error ratio over time in Fig. 8. 816

Initially, each scheme exhibits a reasonable error ratio, but 817

the DNS-based scheme and PureAnycast experience a rapid 818

error ratio increase over time. These schemes allocate CDN 819

servers solely based on delay, sending requests to the local 820

server regardless of its resource load. 821

The error ratio peaks almost every 20 minutes due 822

to accumulated CPU-sensitive requests overloading CPU 823

resources. High CPU load can cause servers to halt, negatively 824

impacting the user experience and bringing recovery costs. 825

FastRoute suffers the most from such server halting problems, 826
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TABLE III
CROSS-REGION FORWARDING RATIO OF FASTROUTE (F)

AND POLYGON (P)

Fig. 9. Requests completed per region with FastRoute vs. Polygon.

displaying the highest error ratio. Due to FastRoute’s inability827

to consider multiple resource types, redirecting requests to828

backup servers can still lead to single point congestion, even829

if backup servers temporarily alleviate some pressure.830

In comparison, Polygon achieves the lowest error request831

ratio throughout the experiment. When a server becomes832

crowded in one resource type, Polygon forwards correspond-833

ing requests to unoccupied servers in other regions, balancing834

resource loads and reducing congestion. Notably, Polygon’s835

error ratio peaks occur later than others, suggesting its836

effectiveness in delaying resource congestion.837

E. Forwarding Behavior838

FastRoute is the most relevant baseline to Polygon, as it839

also forwards requests to other regions. By comparing their840

forwarding behavior, we identify two key properties that make841

Polygon’s forwarding superior: 1) forwarding appropriate842

requests only when necessary; 2) fair allocation of requests843

across regions.844

1) Forwarding Appropriate Requests: We examine the ratio845

of cross-region forwarded requests with different resource846

sensitivities in Table III. As expected, Polygon’s forwarding847

ratio for delay-sensitive requests is zero. Generally, nearby848

CDN servers are optimal for handling delay-sensitive requests849

due to their shorter delay. In contrast, FastRoute forwards850

65.4% of delay-sensitive requests to the inner layer. This851

results in many delay-sensitive requests being incorrectly852

redirected to farther servers just because their less-relevant853

resources are overloaded. This forwarding property further854

explains the poor performance of delay-sensitive requests855

using FastRoute.856

2) Fair Allocation of Requests: In Table III, we also observe857

significant differences in forwarding ratios for bandwidth-858

sensitive and CPU-sensitive requests between Polygon and859

FastRoute. Therefore, in Fig. 9, we further compare the860

number of completed requests in each region between861

FastRoute and Polygon. It is evident that Polygon allocates862

bandwidth-sensitive and CPU-sensitive requests more evenly863

by precisely understanding resource requirements. Moreover,864

this fair allocation makes Polygon less susceptible to the 865

“herding effect” problem. 866

In contrast, FastRoute shows obviously uneven allocation 867

due to its constraint of redirecting requests only from outer 868

to inner layers, excluding within the same layer. FastRoute’s 869

architecture includes an outer layer with servers in Asia, 870

Europe, and North America, and an inner layer with servers 871

in other regions. Figure 9 shows that servers in Asia and 872

North America handle significantly more requests than those in 873

Europe, despite all belonging to the outer layer, primarily due 874

to more users in Asia and North America. However, FastRoute 875

cannot redirect requests within the outer layer, leading to a 876

continuously imbalanced request pattern and worsening its 877

performance. 878

F. Redundant Forwarding 879

To enhance Polygon’s robustness and avoid potential 880

response failures, we introduce a redundant forwarding 881

mechanism that triggers under specific conditions. The client 882

prioritizes the first response and discards the latter one. Our 883

experiments show that an average of 10% of requests trigger 884

redundant forwarding, with 2% of connections established by 885

the second optimal server. Enabling this mechanism improves 886

median JCT from 22.55 s to 20.59 s and reduces the 887

overall error ratio from 7.1% to 6.4%. This demonstrates 888

that redundant forwarding reduces errors and enhances 889

responsiveness. 890

V. SIMULATION 891

This section explores Polygon’s performance in various 892

simulations. We introduce the simulation setup (Section V-A), 893

present JCT performance and throughput at scale (Section V- 894

B), discuss the impact of resource arrangement and Polygon’s 895

capability to reschedule resources (Section V-C), study the 896

benefits of cross-region requests under different network 897

conditions (Section V-D), and analyze Polygon’s overhead 898

from a scalability perspective (Section V-E). 899

A. Simulation Setup 900

We create simulation environments using Mininet,12 a 901

widely used network emulator creating a realistic virtual 902

network with running real kernels, switches, and application 903

codes. The host running Mininet is configured with 64 CPU 904

cores and 187 GB of memory. To mimic real-world network 905

conditions, we collect network information between each 906

pair of regions and zones13 on the Google Cloud Platform. 907

We collect data over a week and calculate the median value 908

to represent each pair’s network condition. 909

The deployment setup is listed in Table IV. There are 910

105 clients and 15 servers, with one dispatcher per region. 911

Here, we largely increase the number of test machines using 912

the Mininet emulator to address the scalability limitations 913

of real-world experiments caused by quota restrictions in 914

Section IV. The baselines compared in this section are 915

PureAnycast and FastRoute. 916

12http://mininet.org
13https://cloud.google.com/compute/docs/regions-zones
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TABLE IV
SIMULATION SETUP

Fig. 10. JCT and request throughput comparisons of PureAnycast, FastRoute,
and Polygon at a large scale.

Fig. 11. JCT comparisons of PureAnycast, FastRoute, and Polygon under
different resource arrangement cases. Case 1: improving crowded-request’s
servers. Case 2: improving uncrowded-request’s servers. Case 3: improving
one random server in each region.

B. Large-Scale Evaluation917

We evaluate Polygon’s performance at scale using the above918

setup, comparing its JCT and throughput with PureAnycast919

and FastRoute. Results in Fig. 10 show Polygon outperforms920

the other two schemes in JCT for all three request types921

while maintaining comparable throughput. Notably, for CPU-922

sensitive requests, Polygon achieves significant improvement923

over PureAnycast, with reducing JCT by 42.1% and increasing924

throughput by 13x.925

An unexpected finding observed in Fig. 10(b) is that for926

delay-sensitive requests, PureAnycast shows higher throughput927

than Polygon and FastRoute. Further analysis reveals that928

most delay-sensitive requests completed in the PureAnycast929

scheme come from non-crowded regions (Australia and South930

America). These regions have fewer bandwidth-sensitive and931

CPU-sensitive requests, meaning servers are not fully loaded932

and have sufficient local capacity to handle more delay-933

sensitive requests.934

C. Resource Arrangement935

1) Resource Arrangement Setup: Resources are not evenly936

distributed in most real-world scenarios, requiring CDN937

service providers to adjust resources based on request938

volume manually. Proper resource arrangement is crucial for939

optimizing CDN response speed. We design three resource940

arrangement cases based on the deployment setup as in941

Fig. 12. JCT optimization from cross-region forwarding under good and
poor network conditions.

Section V-A. 1) Case 1: arranging more powerful servers in 942

crowded regions (Asia and the United States). 2) Case 2: 943

arranging more powerful servers in the less crowded regions 944

(Australia and South America). 3) Case 3: one random server 945

in each region is upgraded, doubling/tripling its bandwidth and 946

CPU capacity, with the total resource capacity kept the same 947

across all cases. 948

2) Polygon’s Capability for Resource Rescheduling: This 949

experiment underlines the stability of JCT with Polygon, 950

highlighting its capability for resource rescheduling under 951

different resource arrangements. As shown in Fig. 11, 952

Polygon maintains consistent JCT performance across dif- 953

ferent resource arrangements (maximum standard deviation 954

is 26.0). By contrast, Anycast and FastRoute exhibit larger 955

variations (maximum standard deviations are 81.4 and 65.4, 956

respectively). For these two schemes, resource arrangement 957

is a fragile factor for performance since human-manipulated 958

configuration might not be optimal for every scenario. 959

By perceiving the requests’ resource sensitivity, Polygon 960

addresses this drawback and adaptively reschedules global 961

resources, mitigating the performance impact of different 962

arrangements. 963

D. Different Network Environments 964

1) More JCT Reduction Benefit Under Poor Network 965

Conditions: Here, we examine how network conditions impact 966

Polygon’s performance by creating two network environments: 967

a good network condition (average bandwidth of 2.72 Mbps 968

and average RTT of 42.5 ms) and a poor network condition 969

(average bandwidth of 0.77 Mbps and average RTT of 970

144.6 ms). 971

We view network conditions with an RTT of less than 972

100 ms as “good”, and conversely as “poor”. We use this 973

criterion to divide the real network condition data collected 974

in Section V-A into two categories. The deployment setup 975

remains consistent with that described in Section V-A for both 976

network cases. The good network case is created by randomly 977

configuring network conditions between machines with the 978

good category, while the poor network case is constructed 979

similarly but with using the poor category. 980

Fig. 12(a) shows that Polygon achieves more JCT reduction 981

under poor network conditions, demonstrating Polygon is 982

more helpful in severe network conditions. To investigate its 983

reason, we analyze the JCT of Polygon’s non-cross-region 984
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requests, Polygon’s cross-region requests, and PureAnycast985

requests in Fig. 12(b). It can be found that under poor986

network conditions, cross-region requests can achieve JCT987

comparable to non-cross-region requests. This is owing to988

Polygon’s adaptive forwarding strategy, which selects better989

options during request congestion. In contrast, PureAnycast990

experiences more severe congestion and poorer performance991

due to its lack of flexibility. While under good network992

conditions, request congestion is less severe, making Polygon’s993

cross-region requests benefit less obvious. However, Polygon’s994

resource scheduling still improves non-cross-region request995

performance by forwarding a portion of requests to unoccupied996

servers.997

2) Impact of Network Conditions on Requests Sensitive998

to Different Resource Types: Fig. 12(c) illustrates the JCT999

difference between cross-region and non-cross-region requests1000

for each request type. The y-axis represents the median JCT1001

of non-cross-region requests minus the median JCT of cross-1002

region requests, i.e., JCTnon_cross−JCTcross. Bars above the1003

x-axis indicate that cross-region requests perform better than1004

non-cross-region requests. We find that different request types1005

are affected differently under these two network conditions.1006

For delay-sensitive and bandwidth-sensitive requests, cross-1007

region forwarding under poor network conditions may degrade1008

performance due to additional delays. However, CPU-sensitive1009

requests, which are less affected by network conditions,1010

significantly benefit from being forwarded to unoccupied1011

servers.1012

E. Overhead1013

In this subsection, we examine the overhead of Polygon. Six1014

metrics are used to assess the overhead from the perspectives1015

of client scalability and server scalability.1016

• Client scalability: 1) CPU usage of dispatchers, 2)1017

forwarding traffic volume, and 3) forwarding delay. These1018

metrics quantify the overhead of dispatchers in relation1019

to the number of clients.1020

• Server scalability: 4) measurement traffic volume on1021

servers, 5) CPU usage of servers, and 6) query and1022

ranking delay. These metrics reflect the overhead of1023

resource status measurement on the CDN servers and1024

dispatchers, which are related to the number of servers.1025

The overhead results of scalability experiments are shown1026

in Table V. For client scalability, the CPU usage on a1027

dispatcher is only 60.74% in the case of 2,000 clients, not yet1028

reaching full load. The traffic caused by request forwarding1029

is only 0.722 Mbps, which is a negligible cost for global1030

CDN deployment. The forwarding delay is at most 2.551 ms,1031

an imperceptible delay for requests. For server scalability, the1032

measurement traffic volume on servers is 6.438 Kbps, using1033

only 5.31% of CPU capacity in the case of 15,000 servers.1034

Query and ranking delay is up to only 225.22 ms. Overall,1035

these results demonstrate that Polygon can provide quick-1036

responsive CDN services and handle high-request concurrency1037

without excessive overhead.1038

TABLE V
OVERHEAD OF POLYGON FROM THE PERSPECTIVE OF

CPU USAGE, TRAFFIC, AND DELAY

VI. DISCUSSION 1039

This section discusses the scalability considerations of 1040

Polygon (Section VI-A) and future research to enhance its 1041

performance (Section VI-B). 1042

A. Scalability Considerations 1043

In this subsection, we explore Polygon’s scalability, 1044

focusing on placement strategy and dispatcher density and 1045

cost. 1046

Scalability for placement strategy: Currently, we follow 1047

a strategy aligned with commercial datacenters, placing 1048

dispatchers near major PoPs. This strategy is both cost- 1049

effective and efficient for covering a wide range of regions 1050

and users, as the locations and densities of these commercial 1051

datacenters have been optimized and validated in practice [55]. 1052

Additionally, Polygon could be implemented on commodity 1053

servers without special hardware. This allows us to make 1054

use of the idle edge servers as dispatchers, thus reducing 1055

deployment costs. Our overhead experiments (Section V-E) 1056

show that commodity edge servers are sufficient for running 1057

dispatcher programs. Moreover, the evolution and expansion 1058

of edge servers over the years have ensured broad coverage, 1059

offering feasibility to meet various placement densities. 1060

Scalability for deployment density: A modest number of 1061

dispatchers per region have already effectively managed a high 1062

volume of requests. Our overhead results (Section V-E) show 1063

that five dispatchers can handle 2,000 concurrent requests 1064

and monitor 15,000 servers’ resource information. Even with 1065

minimal configurations (1 vCPU and 3.75 GB memory), 1066

dispatchers perform well. This is due to two optimizations: 1067

1) Dispatchers only process the header part during connection 1068

setup, without parsing data packets. 2) Dispatchers handle 1069

incoming requests but not outbound CDN traffic. Connections 1070

for CDN data flows are established directly between servers 1071

and clients, bypassing the dispatcher. Consequently, a few 1072

strategically placed dispatchers are sufficient for Polygon to 1073

handle global requests efficiently. 1074

B. Future Research 1075

Future enhancements for Polygon in production environ- 1076

ments include: 1077

Exploring the deployment strategy of dispatchers. 1078

Optimizing the placement strategy of dispatchers is a key 1079

direction for future research. We plan to adopt and refine 1080

existing solutions that consider geographical location [56], 1081
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deployment cost [57], [58], and resource utilization [59] to1082

further enhance Polygon’s performance and efficiency.1083

Implementing Polygon over other transport layer1084

protocols. Extending Polygon to support protocols other1085

than QUIC, such as TCP, would broaden its applicability.1086

Although this may reduce some of the low-latency benefits of1087

QUIC adoption, it would provide compatibility with numerous1088

existing TCP-based services and applications. We believe that1089

optimization efforts from the TCP research community could1090

offer alternatives to achieve performance comparable to QUIC.1091

Evaluating and refining Polygon in browser environ-1092

ments. Our experiments demonstrate Polygon’s capability to1093

optimize CDN performance at the request level. We plan to1094

test Polygon in more complicated browsing scenarios, with1095

considering webpage structure and browser loading behavior.1096

Future evaluations will use page-level metrics such as Speed1097

Index and First Content Paint to further validate and optimize1098

Polygon’s performance in real-world browsing environments.1099

VII. RELATED WORK1100

A. Anycast-Based CDN1101

Anycast is a fundamental technology in modern CDNs,1102

aligning well with the CDN concept of fetching Internet1103

content from nearby servers. Flavel et al. [8] proposed1104

FastRoute, a hierarchical anycast-based approach that directs1105

users to the nearest service replicas and has the ability to1106

balance request load. This approach was successfully deployed1107

on the Microsoft Bing search engine [10]. Despite its good1108

performance in server selection, FastRoute faced a control loss1109

problem, directing about 20% of requests to suboptimal end-1110

points [60]. To address this, Alzoubi et al. [5], [6] developed1111

a load-aware anycast CDN routing using server and network1112

load feedback for better redirection control. Fu et al. [7]1113

introduced T-SAC, employing a 1-bit non-redirection flag for1114

fine-grained traffic control. Additionally, Lai and Fu [47]1115

suggested converting a CDN server’s anycast connection to1116

unicast connection via their MIMA middleware to prevent1117

connection interruptions.1118

B. Load Balancing1119

Load balancing is a crucial component in Internet-scale1120

distributed systems. Ananta [32], introduced by Patel et al.1121

in 2013, and Maglev [33], proposed by Eisenbud et al.1122

in 2016, are well-known load balancers deployed on1123

the large-scale networks infrastructure of Microsoft and1124

Google, respectively. Apart from balancing traffic volumes,1125

other considerations have driven research in this area.1126

Mathew et al. [12] took energy optimization as the primary1127

principle and designed an energy-aware algorithm to reduce1128

consumption. Zhang et al. [61] addressed load balancing1129

for scenarios under uncertainties, improving performance1130

when switches occasionally failed. Miao et al. [62] utilized1131

switching ASICs to build faster load balancers, which were1132

capable of handling 10 million connections simultaneously.1133

Gandhi et al. [34] embedded the load balancing function into1134

hardware switches, achieving 10x in capacity and 1/10 in delay1135

than software-based solutions.1136

VIII. CONCLUSION 1137

This paper proposes Polygon, a CDN server selection 1138

system that perceives multiple resource demands based 1139

on QUIC protocol and anycast routing. Equipped with 1140

well-designed dispatchers and measurement probes, Polygon 1141

identifies suitable CDN servers for requests based on 1142

resource requirements and server availability. Leveraging 1143

QUIC’s 0-RTT and connection migration features, Polygon 1144

establishes fast connections and expedites client-server pairing. 1145

Additionally, Polygon minimizes request forwarding delays 1146

across regions through a fast-forwarding overlay among 1147

dispatchers. Evaluations in real-world environments and 1148

simulation testbeds demonstrate Polygon’s capability to 1149

enhance QoE, optimize resource utilization, and dynamically 1150

reschedule resources. 1151

APPENDIX 1152

EFFECTIVENESS OF PROBE REPRESENTATIONS 1153

We conduct a case study to verify the effectiveness of 1154

using probes to represent the network conditions of a region. 1155

We deploy two clients in Shanghai, China. One is connected 1156

to the Internet via a residential wired network, and the other 1157

via a cellular network. A probe node is placed in a datacenter 1158

of Alibaba Cloud in the same city. Two servers are located in 1159

Wisconsin and Utah, each with a maximum network capacity 1160

of 100Mbps. 1161

To assess the similarity between the measurements obtained 1162

by the clients and the probe, both clients and the probe 1163

simultaneously measure available bandwidth to the servers 1164

using the IGI/PTR [48], a lightweight bandwidth measurement 1165

tool. Tests are conducted three times, with each round 1166

lasting one hour and spaced eight hours intervals. We use 1167

the Spearman Correlation Coefficient [63] as the similarity 1168

metric, which ranges from −1 to +1, with values closer 1169

to +1 indicating higher positive correlation. The correlation 1170

coefficient between the wired client and the probe is 0.845, and 1171

that between the cellular client and the probe is 0.805. These 1172

results align with prior research [30], [64], confirming that 1173

network conditions measured by nearby probes can accurately 1174

represent those experienced by clients. 1175
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